| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmat0opsc.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pmat0opsc.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pmat0opsc.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 4 |  | pmat0opsc.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 5 |  | pmat1opsc.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝑃 )  =  ( 0g ‘ 𝑃 ) | 
						
							| 7 |  | eqid | ⊢ ( 1r ‘ 𝑃 )  =  ( 1r ‘ 𝑃 ) | 
						
							| 8 | 1 2 6 7 | pmat1op | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐶 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑃 ) ,  ( 0g ‘ 𝑃 ) ) ) ) | 
						
							| 9 | 1 3 5 7 | ply1scl1 | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐴 ‘  1  )  =  ( 1r ‘ 𝑃 ) ) | 
						
							| 10 | 9 | eqcomd | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑃 )  =  ( 𝐴 ‘  1  ) ) | 
						
							| 11 | 1 3 4 6 | ply1scl0 | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐴 ‘  0  )  =  ( 0g ‘ 𝑃 ) ) | 
						
							| 12 | 11 | eqcomd | ⊢ ( 𝑅  ∈  Ring  →  ( 0g ‘ 𝑃 )  =  ( 𝐴 ‘  0  ) ) | 
						
							| 13 | 10 12 | ifeq12d | ⊢ ( 𝑅  ∈  Ring  →  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑃 ) ,  ( 0g ‘ 𝑃 ) )  =  if ( 𝑖  =  𝑗 ,  ( 𝐴 ‘  1  ) ,  ( 𝐴 ‘  0  ) ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑃 ) ,  ( 0g ‘ 𝑃 ) )  =  if ( 𝑖  =  𝑗 ,  ( 𝐴 ‘  1  ) ,  ( 𝐴 ‘  0  ) ) ) | 
						
							| 15 | 14 | mpoeq3dv | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 1r ‘ 𝑃 ) ,  ( 0g ‘ 𝑃 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 𝐴 ‘  1  ) ,  ( 𝐴 ‘  0  ) ) ) ) | 
						
							| 16 | 8 15 | eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 1r ‘ 𝐶 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  if ( 𝑖  =  𝑗 ,  ( 𝐴 ‘  1  ) ,  ( 𝐴 ‘  0  ) ) ) ) |