| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmat0opsc.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
pmat0opsc.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
pmat0opsc.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
| 4 |
|
pmat0opsc.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
pmat1opsc.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 7 |
|
eqid |
⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) |
| 8 |
1 2 6 7
|
pmat1op |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐶 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) ) ) |
| 9 |
1 3 5 7
|
ply1scl1 |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 1 ) = ( 1r ‘ 𝑃 ) ) |
| 10 |
9
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑃 ) = ( 𝐴 ‘ 1 ) ) |
| 11 |
1 3 4 6
|
ply1scl0 |
⊢ ( 𝑅 ∈ Ring → ( 𝐴 ‘ 0 ) = ( 0g ‘ 𝑃 ) ) |
| 12 |
11
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑃 ) = ( 𝐴 ‘ 0 ) ) |
| 13 |
10 12
|
ifeq12d |
⊢ ( 𝑅 ∈ Ring → if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) = if ( 𝑖 = 𝑗 , ( 𝐴 ‘ 1 ) , ( 𝐴 ‘ 0 ) ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) = if ( 𝑖 = 𝑗 , ( 𝐴 ‘ 1 ) , ( 𝐴 ‘ 0 ) ) ) |
| 15 |
14
|
mpoeq3dv |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 1r ‘ 𝑃 ) , ( 0g ‘ 𝑃 ) ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 𝐴 ‘ 1 ) , ( 𝐴 ‘ 0 ) ) ) ) |
| 16 |
8 15
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐶 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ if ( 𝑖 = 𝑗 , ( 𝐴 ‘ 1 ) , ( 𝐴 ‘ 0 ) ) ) ) |