| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decpmatid.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | decpmatid.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | decpmatid.i |  |-  I = ( 1r ` C ) | 
						
							| 4 |  | decpmatid.a |  |-  A = ( N Mat R ) | 
						
							| 5 |  | decpmatid.0 |  |-  .0. = ( 0g ` A ) | 
						
							| 6 |  | decpmatid.1 |  |-  .1. = ( 1r ` A ) | 
						
							| 7 | 1 2 | pmatring |  |-  ( ( N e. Fin /\ R e. Ring ) -> C e. Ring ) | 
						
							| 8 | 7 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> C e. Ring ) | 
						
							| 9 |  | eqid |  |-  ( Base ` C ) = ( Base ` C ) | 
						
							| 10 | 9 3 | ringidcl |  |-  ( C e. Ring -> I e. ( Base ` C ) ) | 
						
							| 11 | 8 10 | syl |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> I e. ( Base ` C ) ) | 
						
							| 12 |  | simp3 |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> K e. NN0 ) | 
						
							| 13 | 2 9 | decpmatval |  |-  ( ( I e. ( Base ` C ) /\ K e. NN0 ) -> ( I decompPMat K ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i I j ) ) ` K ) ) ) | 
						
							| 14 | 11 12 13 | syl2anc |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( I decompPMat K ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i I j ) ) ` K ) ) ) | 
						
							| 15 |  | eqid |  |-  ( 0g ` P ) = ( 0g ` P ) | 
						
							| 16 |  | eqid |  |-  ( 1r ` P ) = ( 1r ` P ) | 
						
							| 17 |  | simp11 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> N e. Fin ) | 
						
							| 18 |  | simp12 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> R e. Ring ) | 
						
							| 19 |  | simp2 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> i e. N ) | 
						
							| 20 |  | simp3 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> j e. N ) | 
						
							| 21 | 1 2 15 16 17 18 19 20 3 | pmat1ovd |  |-  ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> ( i I j ) = if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> ( coe1 ` ( i I j ) ) = ( coe1 ` if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) ) | 
						
							| 23 | 22 | fveq1d |  |-  ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> ( ( coe1 ` ( i I j ) ) ` K ) = ( ( coe1 ` if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) ` K ) ) | 
						
							| 24 |  | fvif |  |-  ( coe1 ` if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) = if ( i = j , ( coe1 ` ( 1r ` P ) ) , ( coe1 ` ( 0g ` P ) ) ) | 
						
							| 25 | 24 | fveq1i |  |-  ( ( coe1 ` if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) ` K ) = ( if ( i = j , ( coe1 ` ( 1r ` P ) ) , ( coe1 ` ( 0g ` P ) ) ) ` K ) | 
						
							| 26 |  | iffv |  |-  ( if ( i = j , ( coe1 ` ( 1r ` P ) ) , ( coe1 ` ( 0g ` P ) ) ) ` K ) = if ( i = j , ( ( coe1 ` ( 1r ` P ) ) ` K ) , ( ( coe1 ` ( 0g ` P ) ) ` K ) ) | 
						
							| 27 | 25 26 | eqtri |  |-  ( ( coe1 ` if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) ` K ) = if ( i = j , ( ( coe1 ` ( 1r ` P ) ) ` K ) , ( ( coe1 ` ( 0g ` P ) ) ` K ) ) | 
						
							| 28 |  | eqid |  |-  ( var1 ` R ) = ( var1 ` R ) | 
						
							| 29 |  | eqid |  |-  ( mulGrp ` P ) = ( mulGrp ` P ) | 
						
							| 30 |  | eqid |  |-  ( .g ` ( mulGrp ` P ) ) = ( .g ` ( mulGrp ` P ) ) | 
						
							| 31 | 1 28 29 30 | ply1idvr1 |  |-  ( R e. Ring -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) = ( 1r ` P ) ) | 
						
							| 32 | 31 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) = ( 1r ` P ) ) | 
						
							| 33 | 32 | eqcomd |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( 1r ` P ) = ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( coe1 ` ( 1r ` P ) ) = ( coe1 ` ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) | 
						
							| 35 | 34 | fveq1d |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( ( coe1 ` ( 1r ` P ) ) ` K ) = ( ( coe1 ` ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ` K ) ) | 
						
							| 36 | 1 | ply1lmod |  |-  ( R e. Ring -> P e. LMod ) | 
						
							| 37 | 36 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> P e. LMod ) | 
						
							| 38 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 39 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 40 | 1 28 29 30 39 | ply1moncl |  |-  ( ( R e. Ring /\ 0 e. NN0 ) -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. ( Base ` P ) ) | 
						
							| 41 | 38 40 | mpan2 |  |-  ( R e. Ring -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. ( Base ` P ) ) | 
						
							| 42 | 41 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. ( Base ` P ) ) | 
						
							| 43 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 44 |  | eqid |  |-  ( .s ` P ) = ( .s ` P ) | 
						
							| 45 |  | eqid |  |-  ( 1r ` ( Scalar ` P ) ) = ( 1r ` ( Scalar ` P ) ) | 
						
							| 46 | 39 43 44 45 | lmodvs1 |  |-  ( ( P e. LMod /\ ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) e. ( Base ` P ) ) -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) | 
						
							| 47 | 37 42 46 | syl2anc |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) | 
						
							| 48 | 47 | eqcomd |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) = ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) | 
						
							| 49 | 48 | fveq2d |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( coe1 ` ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) = ( coe1 ` ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ) | 
						
							| 50 | 49 | fveq1d |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( ( coe1 ` ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ` K ) = ( ( coe1 ` ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ` K ) ) | 
						
							| 51 |  | simp2 |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> R e. Ring ) | 
						
							| 52 | 1 | ply1sca |  |-  ( R e. Ring -> R = ( Scalar ` P ) ) | 
						
							| 53 | 52 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> R = ( Scalar ` P ) ) | 
						
							| 54 | 53 | eqcomd |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( Scalar ` P ) = R ) | 
						
							| 55 | 54 | fveq2d |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( 1r ` ( Scalar ` P ) ) = ( 1r ` R ) ) | 
						
							| 56 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 57 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 58 | 56 57 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 59 | 58 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( 1r ` R ) e. ( Base ` R ) ) | 
						
							| 60 | 55 59 | eqeltrd |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( 1r ` ( Scalar ` P ) ) e. ( Base ` R ) ) | 
						
							| 61 | 38 | a1i |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> 0 e. NN0 ) | 
						
							| 62 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 63 | 62 56 1 28 44 29 30 | coe1tm |  |-  ( ( R e. Ring /\ ( 1r ` ( Scalar ` P ) ) e. ( Base ` R ) /\ 0 e. NN0 ) -> ( coe1 ` ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) = ( k e. NN0 |-> if ( k = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) ) | 
						
							| 64 | 51 60 61 63 | syl3anc |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( coe1 ` ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) = ( k e. NN0 |-> if ( k = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) ) | 
						
							| 65 |  | eqeq1 |  |-  ( k = K -> ( k = 0 <-> K = 0 ) ) | 
						
							| 66 | 65 | ifbid |  |-  ( k = K -> if ( k = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) = if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) | 
						
							| 67 | 66 | adantl |  |-  ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ k = K ) -> if ( k = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) = if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) | 
						
							| 68 |  | fvex |  |-  ( 1r ` ( Scalar ` P ) ) e. _V | 
						
							| 69 |  | fvex |  |-  ( 0g ` R ) e. _V | 
						
							| 70 | 68 69 | ifex |  |-  if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) e. _V | 
						
							| 71 | 70 | a1i |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) e. _V ) | 
						
							| 72 | 64 67 12 71 | fvmptd |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( ( coe1 ` ( ( 1r ` ( Scalar ` P ) ) ( .s ` P ) ( 0 ( .g ` ( mulGrp ` P ) ) ( var1 ` R ) ) ) ) ` K ) = if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) | 
						
							| 73 | 35 50 72 | 3eqtrd |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( ( coe1 ` ( 1r ` P ) ) ` K ) = if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) | 
						
							| 74 | 1 15 62 | coe1z |  |-  ( R e. Ring -> ( coe1 ` ( 0g ` P ) ) = ( NN0 X. { ( 0g ` R ) } ) ) | 
						
							| 75 | 74 | 3ad2ant2 |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( coe1 ` ( 0g ` P ) ) = ( NN0 X. { ( 0g ` R ) } ) ) | 
						
							| 76 | 75 | fveq1d |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( ( coe1 ` ( 0g ` P ) ) ` K ) = ( ( NN0 X. { ( 0g ` R ) } ) ` K ) ) | 
						
							| 77 | 69 | a1i |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( 0g ` R ) e. _V ) | 
						
							| 78 |  | fvconst2g |  |-  ( ( ( 0g ` R ) e. _V /\ K e. NN0 ) -> ( ( NN0 X. { ( 0g ` R ) } ) ` K ) = ( 0g ` R ) ) | 
						
							| 79 | 77 12 78 | syl2anc |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( ( NN0 X. { ( 0g ` R ) } ) ` K ) = ( 0g ` R ) ) | 
						
							| 80 | 76 79 | eqtrd |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( ( coe1 ` ( 0g ` P ) ) ` K ) = ( 0g ` R ) ) | 
						
							| 81 | 73 80 | ifeq12d |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> if ( i = j , ( ( coe1 ` ( 1r ` P ) ) ` K ) , ( ( coe1 ` ( 0g ` P ) ) ` K ) ) = if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) | 
						
							| 82 | 81 | 3ad2ant1 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> if ( i = j , ( ( coe1 ` ( 1r ` P ) ) ` K ) , ( ( coe1 ` ( 0g ` P ) ) ` K ) ) = if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) | 
						
							| 83 | 27 82 | eqtrid |  |-  ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> ( ( coe1 ` if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) ` K ) = if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) | 
						
							| 84 | 23 83 | eqtrd |  |-  ( ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) /\ i e. N /\ j e. N ) -> ( ( coe1 ` ( i I j ) ) ` K ) = if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) | 
						
							| 85 | 84 | mpoeq3dva |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( i e. N , j e. N |-> ( ( coe1 ` ( i I j ) ) ` K ) ) = ( i e. N , j e. N |-> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) ) | 
						
							| 86 | 53 | adantl |  |-  ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> R = ( Scalar ` P ) ) | 
						
							| 87 | 86 | eqcomd |  |-  ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( Scalar ` P ) = R ) | 
						
							| 88 | 87 | fveq2d |  |-  ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( 1r ` ( Scalar ` P ) ) = ( 1r ` R ) ) | 
						
							| 89 | 88 | ifeq1d |  |-  ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> if ( i = j , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) = if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) | 
						
							| 90 | 89 | mpoeq3dv |  |-  ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( i e. N , j e. N |-> if ( i = j , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) ) | 
						
							| 91 |  | iftrue |  |-  ( K = 0 -> if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) = ( 1r ` ( Scalar ` P ) ) ) | 
						
							| 92 | 91 | ifeq1d |  |-  ( K = 0 -> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) = if ( i = j , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) | 
						
							| 93 | 92 | adantr |  |-  ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) = if ( i = j , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) | 
						
							| 94 | 93 | mpoeq3dv |  |-  ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( i e. N , j e. N |-> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) = ( i e. N , j e. N |-> if ( i = j , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) ) ) | 
						
							| 95 | 4 57 62 | mat1 |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 1r ` A ) = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) ) | 
						
							| 96 | 6 95 | eqtrid |  |-  ( ( N e. Fin /\ R e. Ring ) -> .1. = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) ) | 
						
							| 97 | 96 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> .1. = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) ) | 
						
							| 98 | 97 | adantl |  |-  ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> .1. = ( i e. N , j e. N |-> if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) ) | 
						
							| 99 | 90 94 98 | 3eqtr4d |  |-  ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( i e. N , j e. N |-> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) = .1. ) | 
						
							| 100 |  | iftrue |  |-  ( K = 0 -> if ( K = 0 , .1. , .0. ) = .1. ) | 
						
							| 101 | 100 | eqcomd |  |-  ( K = 0 -> .1. = if ( K = 0 , .1. , .0. ) ) | 
						
							| 102 | 101 | adantr |  |-  ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> .1. = if ( K = 0 , .1. , .0. ) ) | 
						
							| 103 | 99 102 | eqtrd |  |-  ( ( K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( i e. N , j e. N |-> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) = if ( K = 0 , .1. , .0. ) ) | 
						
							| 104 |  | ifid |  |-  if ( i = j , ( 0g ` R ) , ( 0g ` R ) ) = ( 0g ` R ) | 
						
							| 105 | 104 | a1i |  |-  ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> if ( i = j , ( 0g ` R ) , ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 106 | 105 | mpoeq3dv |  |-  ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( i e. N , j e. N |-> if ( i = j , ( 0g ` R ) , ( 0g ` R ) ) ) = ( i e. N , j e. N |-> ( 0g ` R ) ) ) | 
						
							| 107 |  | iffalse |  |-  ( -. K = 0 -> if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 108 | 107 | adantr |  |-  ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) = ( 0g ` R ) ) | 
						
							| 109 | 108 | ifeq1d |  |-  ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) = if ( i = j , ( 0g ` R ) , ( 0g ` R ) ) ) | 
						
							| 110 | 109 | mpoeq3dv |  |-  ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( i e. N , j e. N |-> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) = ( i e. N , j e. N |-> if ( i = j , ( 0g ` R ) , ( 0g ` R ) ) ) ) | 
						
							| 111 |  | 3simpa |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 112 | 111 | adantl |  |-  ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 113 | 4 62 | mat0op |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( 0g ` A ) = ( i e. N , j e. N |-> ( 0g ` R ) ) ) | 
						
							| 114 | 5 113 | eqtrid |  |-  ( ( N e. Fin /\ R e. Ring ) -> .0. = ( i e. N , j e. N |-> ( 0g ` R ) ) ) | 
						
							| 115 | 112 114 | syl |  |-  ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> .0. = ( i e. N , j e. N |-> ( 0g ` R ) ) ) | 
						
							| 116 | 106 110 115 | 3eqtr4d |  |-  ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( i e. N , j e. N |-> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) = .0. ) | 
						
							| 117 |  | iffalse |  |-  ( -. K = 0 -> if ( K = 0 , .1. , .0. ) = .0. ) | 
						
							| 118 | 117 | eqcomd |  |-  ( -. K = 0 -> .0. = if ( K = 0 , .1. , .0. ) ) | 
						
							| 119 | 118 | adantr |  |-  ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> .0. = if ( K = 0 , .1. , .0. ) ) | 
						
							| 120 | 116 119 | eqtrd |  |-  ( ( -. K = 0 /\ ( N e. Fin /\ R e. Ring /\ K e. NN0 ) ) -> ( i e. N , j e. N |-> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) = if ( K = 0 , .1. , .0. ) ) | 
						
							| 121 | 103 120 | pm2.61ian |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( i e. N , j e. N |-> if ( i = j , if ( K = 0 , ( 1r ` ( Scalar ` P ) ) , ( 0g ` R ) ) , ( 0g ` R ) ) ) = if ( K = 0 , .1. , .0. ) ) | 
						
							| 122 | 14 85 121 | 3eqtrd |  |-  ( ( N e. Fin /\ R e. Ring /\ K e. NN0 ) -> ( I decompPMat K ) = if ( K = 0 , .1. , .0. ) ) |