Metamath Proof Explorer


Theorem iffv

Description: Move a conditional outside of a function. (Contributed by Thierry Arnoux, 28-Sep-2018)

Ref Expression
Assertion iffv ( if ( 𝜑 , 𝐹 , 𝐺 ) ‘ 𝐴 ) = if ( 𝜑 , ( 𝐹𝐴 ) , ( 𝐺𝐴 ) )

Proof

Step Hyp Ref Expression
1 fveq1 ( if ( 𝜑 , 𝐹 , 𝐺 ) = 𝐹 → ( if ( 𝜑 , 𝐹 , 𝐺 ) ‘ 𝐴 ) = ( 𝐹𝐴 ) )
2 fveq1 ( if ( 𝜑 , 𝐹 , 𝐺 ) = 𝐺 → ( if ( 𝜑 , 𝐹 , 𝐺 ) ‘ 𝐴 ) = ( 𝐺𝐴 ) )
3 1 2 ifsb ( if ( 𝜑 , 𝐹 , 𝐺 ) ‘ 𝐴 ) = if ( 𝜑 , ( 𝐹𝐴 ) , ( 𝐺𝐴 ) )