Metamath Proof Explorer


Theorem fv3

Description: Alternate definition of the value of a function. Definition 6.11 of TakeutiZaring p. 26. (Contributed by NM, 30-Apr-2004) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion fv3 ( 𝐹𝐴 ) = { 𝑥 ∣ ( ∃ 𝑦 ( 𝑥𝑦𝐴 𝐹 𝑦 ) ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) }

Proof

Step Hyp Ref Expression
1 elfv ( 𝑥 ∈ ( 𝐹𝐴 ) ↔ ∃ 𝑧 ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) ) )
2 biimpr ( ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) → ( 𝑦 = 𝑧𝐴 𝐹 𝑦 ) )
3 2 alimi ( ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) → ∀ 𝑦 ( 𝑦 = 𝑧𝐴 𝐹 𝑦 ) )
4 breq2 ( 𝑦 = 𝑧 → ( 𝐴 𝐹 𝑦𝐴 𝐹 𝑧 ) )
5 4 equsalvw ( ∀ 𝑦 ( 𝑦 = 𝑧𝐴 𝐹 𝑦 ) ↔ 𝐴 𝐹 𝑧 )
6 3 5 sylib ( ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) → 𝐴 𝐹 𝑧 )
7 6 anim2i ( ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) ) → ( 𝑥𝑧𝐴 𝐹 𝑧 ) )
8 7 eximi ( ∃ 𝑧 ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) ) → ∃ 𝑧 ( 𝑥𝑧𝐴 𝐹 𝑧 ) )
9 elequ2 ( 𝑧 = 𝑦 → ( 𝑥𝑧𝑥𝑦 ) )
10 breq2 ( 𝑧 = 𝑦 → ( 𝐴 𝐹 𝑧𝐴 𝐹 𝑦 ) )
11 9 10 anbi12d ( 𝑧 = 𝑦 → ( ( 𝑥𝑧𝐴 𝐹 𝑧 ) ↔ ( 𝑥𝑦𝐴 𝐹 𝑦 ) ) )
12 11 cbvexvw ( ∃ 𝑧 ( 𝑥𝑧𝐴 𝐹 𝑧 ) ↔ ∃ 𝑦 ( 𝑥𝑦𝐴 𝐹 𝑦 ) )
13 8 12 sylib ( ∃ 𝑧 ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) ) → ∃ 𝑦 ( 𝑥𝑦𝐴 𝐹 𝑦 ) )
14 exsimpr ( ∃ 𝑧 ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) ) → ∃ 𝑧𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) )
15 eu6 ( ∃! 𝑦 𝐴 𝐹 𝑦 ↔ ∃ 𝑧𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) )
16 14 15 sylibr ( ∃ 𝑧 ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) ) → ∃! 𝑦 𝐴 𝐹 𝑦 )
17 13 16 jca ( ∃ 𝑧 ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) ) → ( ∃ 𝑦 ( 𝑥𝑦𝐴 𝐹 𝑦 ) ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) )
18 nfeu1 𝑦 ∃! 𝑦 𝐴 𝐹 𝑦
19 nfv 𝑦 𝑥𝑧
20 nfa1 𝑦𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 )
21 19 20 nfan 𝑦 ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) )
22 21 nfex 𝑦𝑧 ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) )
23 18 22 nfim 𝑦 ( ∃! 𝑦 𝐴 𝐹 𝑦 → ∃ 𝑧 ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) ) )
24 biimp ( ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) → ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) )
25 ax9 ( 𝑦 = 𝑧 → ( 𝑥𝑦𝑥𝑧 ) )
26 24 25 syl6 ( ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) → ( 𝐴 𝐹 𝑦 → ( 𝑥𝑦𝑥𝑧 ) ) )
27 26 impcomd ( ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) → ( ( 𝑥𝑦𝐴 𝐹 𝑦 ) → 𝑥𝑧 ) )
28 27 sps ( ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) → ( ( 𝑥𝑦𝐴 𝐹 𝑦 ) → 𝑥𝑧 ) )
29 28 anc2ri ( ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) → ( ( 𝑥𝑦𝐴 𝐹 𝑦 ) → ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) ) ) )
30 29 com12 ( ( 𝑥𝑦𝐴 𝐹 𝑦 ) → ( ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) → ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) ) ) )
31 30 eximdv ( ( 𝑥𝑦𝐴 𝐹 𝑦 ) → ( ∃ 𝑧𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) → ∃ 𝑧 ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) ) ) )
32 15 31 syl5bi ( ( 𝑥𝑦𝐴 𝐹 𝑦 ) → ( ∃! 𝑦 𝐴 𝐹 𝑦 → ∃ 𝑧 ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) ) ) )
33 23 32 exlimi ( ∃ 𝑦 ( 𝑥𝑦𝐴 𝐹 𝑦 ) → ( ∃! 𝑦 𝐴 𝐹 𝑦 → ∃ 𝑧 ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) ) ) )
34 33 imp ( ( ∃ 𝑦 ( 𝑥𝑦𝐴 𝐹 𝑦 ) ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) → ∃ 𝑧 ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) ) )
35 17 34 impbii ( ∃ 𝑧 ( 𝑥𝑧 ∧ ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑧 ) ) ↔ ( ∃ 𝑦 ( 𝑥𝑦𝐴 𝐹 𝑦 ) ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) )
36 1 35 bitri ( 𝑥 ∈ ( 𝐹𝐴 ) ↔ ( ∃ 𝑦 ( 𝑥𝑦𝐴 𝐹 𝑦 ) ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) )
37 36 abbi2i ( 𝐹𝐴 ) = { 𝑥 ∣ ( ∃ 𝑦 ( 𝑥𝑦𝐴 𝐹 𝑦 ) ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) }