Description: Distribute a function over an if-clause. (Contributed by Mario Carneiro, 14-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ifsb.1 | ⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 → 𝐶 = 𝐷 ) | |
| ifsb.2 | ⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 → 𝐶 = 𝐸 ) | ||
| Assertion | ifsb | ⊢ 𝐶 = if ( 𝜑 , 𝐷 , 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifsb.1 | ⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 → 𝐶 = 𝐷 ) | |
| 2 | ifsb.2 | ⊢ ( if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 → 𝐶 = 𝐸 ) | |
| 3 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) | |
| 4 | 3 1 | syl | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) |
| 5 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐷 , 𝐸 ) = 𝐷 ) | |
| 6 | 4 5 | eqtr4d | ⊢ ( 𝜑 → 𝐶 = if ( 𝜑 , 𝐷 , 𝐸 ) ) |
| 7 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) | |
| 8 | 7 2 | syl | ⊢ ( ¬ 𝜑 → 𝐶 = 𝐸 ) |
| 9 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐷 , 𝐸 ) = 𝐸 ) | |
| 10 | 8 9 | eqtr4d | ⊢ ( ¬ 𝜑 → 𝐶 = if ( 𝜑 , 𝐷 , 𝐸 ) ) |
| 11 | 6 10 | pm2.61i | ⊢ 𝐶 = if ( 𝜑 , 𝐷 , 𝐸 ) |