| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfif3.1 |
⊢ 𝐶 = { 𝑥 ∣ 𝜑 } |
| 2 |
|
dfif6 |
⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( { 𝑦 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑦 ∈ 𝐵 ∣ ¬ 𝜑 } ) |
| 3 |
|
biidd |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜑 ) ) |
| 4 |
3
|
cbvabv |
⊢ { 𝑥 ∣ 𝜑 } = { 𝑦 ∣ 𝜑 } |
| 5 |
1 4
|
eqtri |
⊢ 𝐶 = { 𝑦 ∣ 𝜑 } |
| 6 |
5
|
ineq2i |
⊢ ( 𝐴 ∩ 𝐶 ) = ( 𝐴 ∩ { 𝑦 ∣ 𝜑 } ) |
| 7 |
|
dfrab3 |
⊢ { 𝑦 ∈ 𝐴 ∣ 𝜑 } = ( 𝐴 ∩ { 𝑦 ∣ 𝜑 } ) |
| 8 |
6 7
|
eqtr4i |
⊢ ( 𝐴 ∩ 𝐶 ) = { 𝑦 ∈ 𝐴 ∣ 𝜑 } |
| 9 |
|
dfrab3 |
⊢ { 𝑦 ∈ 𝐵 ∣ ¬ 𝜑 } = ( 𝐵 ∩ { 𝑦 ∣ ¬ 𝜑 } ) |
| 10 |
|
biidd |
⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜑 ) ) |
| 11 |
10
|
notabw |
⊢ { 𝑦 ∣ ¬ 𝜑 } = ( V ∖ { 𝑧 ∣ 𝜑 } ) |
| 12 |
|
biidd |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ 𝜑 ) ) |
| 13 |
12
|
cbvabv |
⊢ { 𝑥 ∣ 𝜑 } = { 𝑧 ∣ 𝜑 } |
| 14 |
1 13
|
eqtri |
⊢ 𝐶 = { 𝑧 ∣ 𝜑 } |
| 15 |
14
|
difeq2i |
⊢ ( V ∖ 𝐶 ) = ( V ∖ { 𝑧 ∣ 𝜑 } ) |
| 16 |
11 15
|
eqtr4i |
⊢ { 𝑦 ∣ ¬ 𝜑 } = ( V ∖ 𝐶 ) |
| 17 |
16
|
ineq2i |
⊢ ( 𝐵 ∩ { 𝑦 ∣ ¬ 𝜑 } ) = ( 𝐵 ∩ ( V ∖ 𝐶 ) ) |
| 18 |
9 17
|
eqtr2i |
⊢ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) = { 𝑦 ∈ 𝐵 ∣ ¬ 𝜑 } |
| 19 |
8 18
|
uneq12i |
⊢ ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) = ( { 𝑦 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑦 ∈ 𝐵 ∣ ¬ 𝜑 } ) |
| 20 |
2 19
|
eqtr4i |
⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( ( 𝐴 ∩ 𝐶 ) ∪ ( 𝐵 ∩ ( V ∖ 𝐶 ) ) ) |