| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfif3.1 |  |-  C = { x | ph } | 
						
							| 2 |  | dfif6 |  |-  if ( ph , A , B ) = ( { y e. A | ph } u. { y e. B | -. ph } ) | 
						
							| 3 |  | biidd |  |-  ( x = y -> ( ph <-> ph ) ) | 
						
							| 4 | 3 | cbvabv |  |-  { x | ph } = { y | ph } | 
						
							| 5 | 1 4 | eqtri |  |-  C = { y | ph } | 
						
							| 6 | 5 | ineq2i |  |-  ( A i^i C ) = ( A i^i { y | ph } ) | 
						
							| 7 |  | dfrab3 |  |-  { y e. A | ph } = ( A i^i { y | ph } ) | 
						
							| 8 | 6 7 | eqtr4i |  |-  ( A i^i C ) = { y e. A | ph } | 
						
							| 9 |  | dfrab3 |  |-  { y e. B | -. ph } = ( B i^i { y | -. ph } ) | 
						
							| 10 |  | biidd |  |-  ( y = z -> ( ph <-> ph ) ) | 
						
							| 11 | 10 | notabw |  |-  { y | -. ph } = ( _V \ { z | ph } ) | 
						
							| 12 |  | biidd |  |-  ( x = z -> ( ph <-> ph ) ) | 
						
							| 13 | 12 | cbvabv |  |-  { x | ph } = { z | ph } | 
						
							| 14 | 1 13 | eqtri |  |-  C = { z | ph } | 
						
							| 15 | 14 | difeq2i |  |-  ( _V \ C ) = ( _V \ { z | ph } ) | 
						
							| 16 | 11 15 | eqtr4i |  |-  { y | -. ph } = ( _V \ C ) | 
						
							| 17 | 16 | ineq2i |  |-  ( B i^i { y | -. ph } ) = ( B i^i ( _V \ C ) ) | 
						
							| 18 | 9 17 | eqtr2i |  |-  ( B i^i ( _V \ C ) ) = { y e. B | -. ph } | 
						
							| 19 | 8 18 | uneq12i |  |-  ( ( A i^i C ) u. ( B i^i ( _V \ C ) ) ) = ( { y e. A | ph } u. { y e. B | -. ph } ) | 
						
							| 20 | 2 19 | eqtr4i |  |-  if ( ph , A , B ) = ( ( A i^i C ) u. ( B i^i ( _V \ C ) ) ) |