Metamath Proof Explorer


Theorem dfif6

Description: An alternate definition of the conditional operator df-if as a simple class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion dfif6
|- if ( ph , A , B ) = ( { x e. A | ph } u. { x e. B | -. ph } )

Proof

Step Hyp Ref Expression
1 unab
 |-  ( { x | ( x e. A /\ ph ) } u. { x | ( x e. B /\ -. ph ) } ) = { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) }
2 df-rab
 |-  { x e. A | ph } = { x | ( x e. A /\ ph ) }
3 df-rab
 |-  { x e. B | -. ph } = { x | ( x e. B /\ -. ph ) }
4 2 3 uneq12i
 |-  ( { x e. A | ph } u. { x e. B | -. ph } ) = ( { x | ( x e. A /\ ph ) } u. { x | ( x e. B /\ -. ph ) } )
5 df-if
 |-  if ( ph , A , B ) = { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) }
6 1 4 5 3eqtr4ri
 |-  if ( ph , A , B ) = ( { x e. A | ph } u. { x e. B | -. ph } )