| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐴  ↔  𝑦  ∈  𝐴 ) ) | 
						
							| 2 | 1 | anbi1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ↔  ( 𝑦  ∈  𝐴  ∧  𝜑 ) ) ) | 
						
							| 3 |  | eleq1w | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ∈  𝐵  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 4 | 3 | anbi1d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  ∈  𝐵  ∧  ¬  𝜑 )  ↔  ( 𝑦  ∈  𝐵  ∧  ¬  𝜑 ) ) ) | 
						
							| 5 | 2 4 | unabw | ⊢ ( { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  ∪  { 𝑥  ∣  ( 𝑥  ∈  𝐵  ∧  ¬  𝜑 ) } )  =  { 𝑦  ∣  ( ( 𝑦  ∈  𝐴  ∧  𝜑 )  ∨  ( 𝑦  ∈  𝐵  ∧  ¬  𝜑 ) ) } | 
						
							| 6 |  | df-rab | ⊢ { 𝑥  ∈  𝐴  ∣  𝜑 }  =  { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) } | 
						
							| 7 |  | df-rab | ⊢ { 𝑥  ∈  𝐵  ∣  ¬  𝜑 }  =  { 𝑥  ∣  ( 𝑥  ∈  𝐵  ∧  ¬  𝜑 ) } | 
						
							| 8 | 6 7 | uneq12i | ⊢ ( { 𝑥  ∈  𝐴  ∣  𝜑 }  ∪  { 𝑥  ∈  𝐵  ∣  ¬  𝜑 } )  =  ( { 𝑥  ∣  ( 𝑥  ∈  𝐴  ∧  𝜑 ) }  ∪  { 𝑥  ∣  ( 𝑥  ∈  𝐵  ∧  ¬  𝜑 ) } ) | 
						
							| 9 |  | df-if | ⊢ if ( 𝜑 ,  𝐴 ,  𝐵 )  =  { 𝑦  ∣  ( ( 𝑦  ∈  𝐴  ∧  𝜑 )  ∨  ( 𝑦  ∈  𝐵  ∧  ¬  𝜑 ) ) } | 
						
							| 10 | 5 8 9 | 3eqtr4ri | ⊢ if ( 𝜑 ,  𝐴 ,  𝐵 )  =  ( { 𝑥  ∈  𝐴  ∣  𝜑 }  ∪  { 𝑥  ∈  𝐵  ∣  ¬  𝜑 } ) |