| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							unabw.1 | 
							 |-  ( x = y -> ( ph <-> ch ) )  | 
						
						
							| 2 | 
							
								
							 | 
							unabw.2 | 
							 |-  ( x = y -> ( ps <-> th ) )  | 
						
						
							| 3 | 
							
								
							 | 
							df-un | 
							 |-  ( { x | ph } u. { x | ps } ) = { y | ( y e. { x | ph } \/ y e. { x | ps } ) } | 
						
						
							| 4 | 
							
								
							 | 
							df-clab | 
							 |-  ( y e. { x | ph } <-> [ y / x ] ph ) | 
						
						
							| 5 | 
							
								1
							 | 
							sbievw | 
							 |-  ( [ y / x ] ph <-> ch )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							bitri | 
							 |-  ( y e. { x | ph } <-> ch ) | 
						
						
							| 7 | 
							
								
							 | 
							df-clab | 
							 |-  ( y e. { x | ps } <-> [ y / x ] ps ) | 
						
						
							| 8 | 
							
								2
							 | 
							sbievw | 
							 |-  ( [ y / x ] ps <-> th )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							bitri | 
							 |-  ( y e. { x | ps } <-> th ) | 
						
						
							| 10 | 
							
								6 9
							 | 
							orbi12i | 
							 |-  ( ( y e. { x | ph } \/ y e. { x | ps } ) <-> ( ch \/ th ) ) | 
						
						
							| 11 | 
							
								10
							 | 
							abbii | 
							 |-  { y | ( y e. { x | ph } \/ y e. { x | ps } ) } = { y | ( ch \/ th ) } | 
						
						
							| 12 | 
							
								3 11
							 | 
							eqtri | 
							 |-  ( { x | ph } u. { x | ps } ) = { y | ( ch \/ th ) } |