| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfif3.1 | ⊢ 𝐶  =  { 𝑥  ∣  𝜑 } | 
						
							| 2 | 1 | dfif3 | ⊢ if ( 𝜑 ,  𝐴 ,  𝐵 )  =  ( ( 𝐴  ∩  𝐶 )  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) ) | 
						
							| 3 |  | undir | ⊢ ( ( 𝐴  ∩  𝐶 )  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) )  =  ( ( 𝐴  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) )  ∩  ( 𝐶  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) ) ) | 
						
							| 4 |  | undi | ⊢ ( 𝐴  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) )  =  ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐴  ∪  ( V  ∖  𝐶 ) ) ) | 
						
							| 5 |  | undi | ⊢ ( 𝐶  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) )  =  ( ( 𝐶  ∪  𝐵 )  ∩  ( 𝐶  ∪  ( V  ∖  𝐶 ) ) ) | 
						
							| 6 |  | uncom | ⊢ ( 𝐶  ∪  𝐵 )  =  ( 𝐵  ∪  𝐶 ) | 
						
							| 7 |  | unvdif | ⊢ ( 𝐶  ∪  ( V  ∖  𝐶 ) )  =  V | 
						
							| 8 | 6 7 | ineq12i | ⊢ ( ( 𝐶  ∪  𝐵 )  ∩  ( 𝐶  ∪  ( V  ∖  𝐶 ) ) )  =  ( ( 𝐵  ∪  𝐶 )  ∩  V ) | 
						
							| 9 |  | inv1 | ⊢ ( ( 𝐵  ∪  𝐶 )  ∩  V )  =  ( 𝐵  ∪  𝐶 ) | 
						
							| 10 | 5 8 9 | 3eqtri | ⊢ ( 𝐶  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) )  =  ( 𝐵  ∪  𝐶 ) | 
						
							| 11 | 4 10 | ineq12i | ⊢ ( ( 𝐴  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) )  ∩  ( 𝐶  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) ) )  =  ( ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐴  ∪  ( V  ∖  𝐶 ) ) )  ∩  ( 𝐵  ∪  𝐶 ) ) | 
						
							| 12 |  | inass | ⊢ ( ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐴  ∪  ( V  ∖  𝐶 ) ) )  ∩  ( 𝐵  ∪  𝐶 ) )  =  ( ( 𝐴  ∪  𝐵 )  ∩  ( ( 𝐴  ∪  ( V  ∖  𝐶 ) )  ∩  ( 𝐵  ∪  𝐶 ) ) ) | 
						
							| 13 | 11 12 | eqtri | ⊢ ( ( 𝐴  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) )  ∩  ( 𝐶  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) ) )  =  ( ( 𝐴  ∪  𝐵 )  ∩  ( ( 𝐴  ∪  ( V  ∖  𝐶 ) )  ∩  ( 𝐵  ∪  𝐶 ) ) ) | 
						
							| 14 | 2 3 13 | 3eqtri | ⊢ if ( 𝜑 ,  𝐴 ,  𝐵 )  =  ( ( 𝐴  ∪  𝐵 )  ∩  ( ( 𝐴  ∪  ( V  ∖  𝐶 ) )  ∩  ( 𝐵  ∪  𝐶 ) ) ) |