| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfif3.1 | ⊢ 𝐶  =  { 𝑥  ∣  𝜑 } | 
						
							| 2 |  | inindi | ⊢ ( ( 𝐴  ∪  𝐵 )  ∩  ( ( 𝐴  ∪  ( V  ∖  𝐶 ) )  ∩  ( 𝐵  ∪  𝐶 ) ) )  =  ( ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐴  ∪  ( V  ∖  𝐶 ) ) )  ∩  ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐵  ∪  𝐶 ) ) ) | 
						
							| 3 | 1 | dfif4 | ⊢ if ( 𝜑 ,  𝐴 ,  𝐵 )  =  ( ( 𝐴  ∪  𝐵 )  ∩  ( ( 𝐴  ∪  ( V  ∖  𝐶 ) )  ∩  ( 𝐵  ∪  𝐶 ) ) ) | 
						
							| 4 |  | undir | ⊢ ( ( 𝐴  ∩  𝐵 )  ∪  ( ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 )  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) )  =  ( ( 𝐴  ∪  ( ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 )  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) )  ∩  ( 𝐵  ∪  ( ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 )  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) ) ) | 
						
							| 5 |  | unidm | ⊢ ( 𝐴  ∪  𝐴 )  =  𝐴 | 
						
							| 6 | 5 | uneq1i | ⊢ ( ( 𝐴  ∪  𝐴 )  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) )  =  ( 𝐴  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) ) | 
						
							| 7 |  | unass | ⊢ ( ( 𝐴  ∪  𝐴 )  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) )  =  ( 𝐴  ∪  ( 𝐴  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) ) ) | 
						
							| 8 |  | undi | ⊢ ( 𝐴  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) )  =  ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐴  ∪  ( V  ∖  𝐶 ) ) ) | 
						
							| 9 | 6 7 8 | 3eqtr3ri | ⊢ ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐴  ∪  ( V  ∖  𝐶 ) ) )  =  ( 𝐴  ∪  ( 𝐴  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) ) ) | 
						
							| 10 |  | undi | ⊢ ( 𝐴  ∪  ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 ) )  =  ( ( 𝐴  ∪  ( 𝐴  ∖  𝐵 ) )  ∩  ( 𝐴  ∪  𝐶 ) ) | 
						
							| 11 |  | undifabs | ⊢ ( 𝐴  ∪  ( 𝐴  ∖  𝐵 ) )  =  𝐴 | 
						
							| 12 | 11 | ineq1i | ⊢ ( ( 𝐴  ∪  ( 𝐴  ∖  𝐵 ) )  ∩  ( 𝐴  ∪  𝐶 ) )  =  ( 𝐴  ∩  ( 𝐴  ∪  𝐶 ) ) | 
						
							| 13 |  | inabs | ⊢ ( 𝐴  ∩  ( 𝐴  ∪  𝐶 ) )  =  𝐴 | 
						
							| 14 | 10 12 13 | 3eqtri | ⊢ ( 𝐴  ∪  ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 ) )  =  𝐴 | 
						
							| 15 |  | undif2 | ⊢ ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  =  ( 𝐴  ∪  𝐵 ) | 
						
							| 16 | 15 | ineq1i | ⊢ ( ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  ∩  ( 𝐴  ∪  ( V  ∖  𝐶 ) ) )  =  ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐴  ∪  ( V  ∖  𝐶 ) ) ) | 
						
							| 17 |  | undi | ⊢ ( 𝐴  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) )  =  ( ( 𝐴  ∪  ( 𝐵  ∖  𝐴 ) )  ∩  ( 𝐴  ∪  ( V  ∖  𝐶 ) ) ) | 
						
							| 18 | 16 17 8 | 3eqtr4i | ⊢ ( 𝐴  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) )  =  ( 𝐴  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) ) | 
						
							| 19 | 14 18 | uneq12i | ⊢ ( ( 𝐴  ∪  ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 ) )  ∪  ( 𝐴  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) )  =  ( 𝐴  ∪  ( 𝐴  ∪  ( 𝐵  ∩  ( V  ∖  𝐶 ) ) ) ) | 
						
							| 20 | 9 19 | eqtr4i | ⊢ ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐴  ∪  ( V  ∖  𝐶 ) ) )  =  ( ( 𝐴  ∪  ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 ) )  ∪  ( 𝐴  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) ) | 
						
							| 21 |  | unundi | ⊢ ( 𝐴  ∪  ( ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 )  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) )  =  ( ( 𝐴  ∪  ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 ) )  ∪  ( 𝐴  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) ) | 
						
							| 22 | 20 21 | eqtr4i | ⊢ ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐴  ∪  ( V  ∖  𝐶 ) ) )  =  ( 𝐴  ∪  ( ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 )  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) ) | 
						
							| 23 |  | unass | ⊢ ( ( ( 𝐴  ∩  𝐶 )  ∪  𝐵 )  ∪  𝐵 )  =  ( ( 𝐴  ∩  𝐶 )  ∪  ( 𝐵  ∪  𝐵 ) ) | 
						
							| 24 |  | undi | ⊢ ( 𝐵  ∪  ( 𝐴  ∩  𝐶 ) )  =  ( ( 𝐵  ∪  𝐴 )  ∩  ( 𝐵  ∪  𝐶 ) ) | 
						
							| 25 |  | uncom | ⊢ ( ( 𝐴  ∩  𝐶 )  ∪  𝐵 )  =  ( 𝐵  ∪  ( 𝐴  ∩  𝐶 ) ) | 
						
							| 26 |  | undif2 | ⊢ ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) )  =  ( 𝐵  ∪  𝐴 ) | 
						
							| 27 | 26 | ineq1i | ⊢ ( ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) )  ∩  ( 𝐵  ∪  𝐶 ) )  =  ( ( 𝐵  ∪  𝐴 )  ∩  ( 𝐵  ∪  𝐶 ) ) | 
						
							| 28 | 24 25 27 | 3eqtr4i | ⊢ ( ( 𝐴  ∩  𝐶 )  ∪  𝐵 )  =  ( ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) )  ∩  ( 𝐵  ∪  𝐶 ) ) | 
						
							| 29 |  | undi | ⊢ ( 𝐵  ∪  ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 ) )  =  ( ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) )  ∩  ( 𝐵  ∪  𝐶 ) ) | 
						
							| 30 | 28 29 | eqtr4i | ⊢ ( ( 𝐴  ∩  𝐶 )  ∪  𝐵 )  =  ( 𝐵  ∪  ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 ) ) | 
						
							| 31 |  | undi | ⊢ ( 𝐵  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) )  =  ( ( 𝐵  ∪  ( 𝐵  ∖  𝐴 ) )  ∩  ( 𝐵  ∪  ( V  ∖  𝐶 ) ) ) | 
						
							| 32 |  | undifabs | ⊢ ( 𝐵  ∪  ( 𝐵  ∖  𝐴 ) )  =  𝐵 | 
						
							| 33 | 32 | ineq1i | ⊢ ( ( 𝐵  ∪  ( 𝐵  ∖  𝐴 ) )  ∩  ( 𝐵  ∪  ( V  ∖  𝐶 ) ) )  =  ( 𝐵  ∩  ( 𝐵  ∪  ( V  ∖  𝐶 ) ) ) | 
						
							| 34 |  | inabs | ⊢ ( 𝐵  ∩  ( 𝐵  ∪  ( V  ∖  𝐶 ) ) )  =  𝐵 | 
						
							| 35 | 31 33 34 | 3eqtrri | ⊢ 𝐵  =  ( 𝐵  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) | 
						
							| 36 | 30 35 | uneq12i | ⊢ ( ( ( 𝐴  ∩  𝐶 )  ∪  𝐵 )  ∪  𝐵 )  =  ( ( 𝐵  ∪  ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 ) )  ∪  ( 𝐵  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) ) | 
						
							| 37 |  | unidm | ⊢ ( 𝐵  ∪  𝐵 )  =  𝐵 | 
						
							| 38 | 37 | uneq2i | ⊢ ( ( 𝐴  ∩  𝐶 )  ∪  ( 𝐵  ∪  𝐵 ) )  =  ( ( 𝐴  ∩  𝐶 )  ∪  𝐵 ) | 
						
							| 39 | 23 36 38 | 3eqtr3ri | ⊢ ( ( 𝐴  ∩  𝐶 )  ∪  𝐵 )  =  ( ( 𝐵  ∪  ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 ) )  ∪  ( 𝐵  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) ) | 
						
							| 40 |  | uncom | ⊢ ( 𝐵  ∪  𝐶 )  =  ( 𝐶  ∪  𝐵 ) | 
						
							| 41 | 40 | ineq2i | ⊢ ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐵  ∪  𝐶 ) )  =  ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐶  ∪  𝐵 ) ) | 
						
							| 42 |  | undir | ⊢ ( ( 𝐴  ∩  𝐶 )  ∪  𝐵 )  =  ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐶  ∪  𝐵 ) ) | 
						
							| 43 | 41 42 | eqtr4i | ⊢ ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐵  ∪  𝐶 ) )  =  ( ( 𝐴  ∩  𝐶 )  ∪  𝐵 ) | 
						
							| 44 |  | unundi | ⊢ ( 𝐵  ∪  ( ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 )  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) )  =  ( ( 𝐵  ∪  ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 ) )  ∪  ( 𝐵  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) ) | 
						
							| 45 | 39 43 44 | 3eqtr4i | ⊢ ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐵  ∪  𝐶 ) )  =  ( 𝐵  ∪  ( ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 )  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) ) | 
						
							| 46 | 22 45 | ineq12i | ⊢ ( ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐴  ∪  ( V  ∖  𝐶 ) ) )  ∩  ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐵  ∪  𝐶 ) ) )  =  ( ( 𝐴  ∪  ( ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 )  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) )  ∩  ( 𝐵  ∪  ( ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 )  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) ) ) | 
						
							| 47 | 4 46 | eqtr4i | ⊢ ( ( 𝐴  ∩  𝐵 )  ∪  ( ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 )  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) )  =  ( ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐴  ∪  ( V  ∖  𝐶 ) ) )  ∩  ( ( 𝐴  ∪  𝐵 )  ∩  ( 𝐵  ∪  𝐶 ) ) ) | 
						
							| 48 | 2 3 47 | 3eqtr4i | ⊢ if ( 𝜑 ,  𝐴 ,  𝐵 )  =  ( ( 𝐴  ∩  𝐵 )  ∪  ( ( ( 𝐴  ∖  𝐵 )  ∩  𝐶 )  ∪  ( ( 𝐵  ∖  𝐴 )  ∩  ( V  ∖  𝐶 ) ) ) ) |