Description: A conditional class is included in the union of its two alternatives. (Contributed by BJ, 15-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifssun | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) ⊆ ( 𝐴 ∪ 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | ⊢ { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ 𝜑 } | |
| 2 | 1 | dfif4 | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( 𝐴 ∪ ( V ∖ { 𝑥 ∣ 𝜑 } ) ) ∩ ( 𝐵 ∪ { 𝑥 ∣ 𝜑 } ) ) ) | 
| 3 | inss1 | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∩ ( ( 𝐴 ∪ ( V ∖ { 𝑥 ∣ 𝜑 } ) ) ∩ ( 𝐵 ∪ { 𝑥 ∣ 𝜑 } ) ) ) ⊆ ( 𝐴 ∪ 𝐵 ) | |
| 4 | 2 3 | eqsstri | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) ⊆ ( 𝐴 ∪ 𝐵 ) |