| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 2 |  | nf3 | ⊢ ( Ⅎ 𝑦 𝜑  ↔  ( ∀ 𝑦 𝜑  ∨  ∀ 𝑦 ¬  𝜑 ) ) | 
						
							| 3 | 1 2 | mpbi | ⊢ ( ∀ 𝑦 𝜑  ∨  ∀ 𝑦 ¬  𝜑 ) | 
						
							| 4 |  | tbtru | ⊢ ( 𝜑  ↔  ( 𝜑  ↔  ⊤ ) ) | 
						
							| 5 |  | df-clab | ⊢ ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  [ 𝑦  /  𝑥 ] 𝜑 ) | 
						
							| 6 |  | sbv | ⊢ ( [ 𝑦  /  𝑥 ] 𝜑  ↔  𝜑 ) | 
						
							| 7 | 5 6 | bitr2i | ⊢ ( 𝜑  ↔  𝑦  ∈  { 𝑥  ∣  𝜑 } ) | 
						
							| 8 |  | tru | ⊢ ⊤ | 
						
							| 9 |  | vextru | ⊢ 𝑦  ∈  { 𝑥  ∣  ⊤ } | 
						
							| 10 | 8 9 | 2th | ⊢ ( ⊤  ↔  𝑦  ∈  { 𝑥  ∣  ⊤ } ) | 
						
							| 11 | 7 10 | bibi12i | ⊢ ( ( 𝜑  ↔  ⊤ )  ↔  ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  𝑦  ∈  { 𝑥  ∣  ⊤ } ) ) | 
						
							| 12 | 4 11 | bitri | ⊢ ( 𝜑  ↔  ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  𝑦  ∈  { 𝑥  ∣  ⊤ } ) ) | 
						
							| 13 | 12 | albii | ⊢ ( ∀ 𝑦 𝜑  ↔  ∀ 𝑦 ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  𝑦  ∈  { 𝑥  ∣  ⊤ } ) ) | 
						
							| 14 |  | dfcleq | ⊢ ( { 𝑥  ∣  𝜑 }  =  { 𝑥  ∣  ⊤ }  ↔  ∀ 𝑦 ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  𝑦  ∈  { 𝑥  ∣  ⊤ } ) ) | 
						
							| 15 |  | dfv2 | ⊢ V  =  { 𝑥  ∣  ⊤ } | 
						
							| 16 | 15 | eqcomi | ⊢ { 𝑥  ∣  ⊤ }  =  V | 
						
							| 17 | 16 | eqeq2i | ⊢ ( { 𝑥  ∣  𝜑 }  =  { 𝑥  ∣  ⊤ }  ↔  { 𝑥  ∣  𝜑 }  =  V ) | 
						
							| 18 | 13 14 17 | 3bitr2i | ⊢ ( ∀ 𝑦 𝜑  ↔  { 𝑥  ∣  𝜑 }  =  V ) | 
						
							| 19 |  | equid | ⊢ 𝑦  =  𝑦 | 
						
							| 20 | 19 | nbn3 | ⊢ ( ¬  𝜑  ↔  ( 𝜑  ↔  ¬  𝑦  =  𝑦 ) ) | 
						
							| 21 |  | df-clab | ⊢ ( 𝑦  ∈  { 𝑥  ∣  ¬  𝑥  =  𝑥 }  ↔  [ 𝑦  /  𝑥 ] ¬  𝑥  =  𝑥 ) | 
						
							| 22 |  | equid | ⊢ 𝑥  =  𝑥 | 
						
							| 23 | 22 19 | 2th | ⊢ ( 𝑥  =  𝑥  ↔  𝑦  =  𝑦 ) | 
						
							| 24 | 23 | notbii | ⊢ ( ¬  𝑥  =  𝑥  ↔  ¬  𝑦  =  𝑦 ) | 
						
							| 25 | 24 | a1i | ⊢ ( 𝑥  =  𝑦  →  ( ¬  𝑥  =  𝑥  ↔  ¬  𝑦  =  𝑦 ) ) | 
						
							| 26 | 25 | sbievw | ⊢ ( [ 𝑦  /  𝑥 ] ¬  𝑥  =  𝑥  ↔  ¬  𝑦  =  𝑦 ) | 
						
							| 27 | 21 26 | bitr2i | ⊢ ( ¬  𝑦  =  𝑦  ↔  𝑦  ∈  { 𝑥  ∣  ¬  𝑥  =  𝑥 } ) | 
						
							| 28 | 7 27 | bibi12i | ⊢ ( ( 𝜑  ↔  ¬  𝑦  =  𝑦 )  ↔  ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  𝑦  ∈  { 𝑥  ∣  ¬  𝑥  =  𝑥 } ) ) | 
						
							| 29 | 20 28 | bitri | ⊢ ( ¬  𝜑  ↔  ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  𝑦  ∈  { 𝑥  ∣  ¬  𝑥  =  𝑥 } ) ) | 
						
							| 30 | 29 | albii | ⊢ ( ∀ 𝑦 ¬  𝜑  ↔  ∀ 𝑦 ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  𝑦  ∈  { 𝑥  ∣  ¬  𝑥  =  𝑥 } ) ) | 
						
							| 31 |  | dfcleq | ⊢ ( { 𝑥  ∣  𝜑 }  =  { 𝑥  ∣  ¬  𝑥  =  𝑥 }  ↔  ∀ 𝑦 ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  𝑦  ∈  { 𝑥  ∣  ¬  𝑥  =  𝑥 } ) ) | 
						
							| 32 |  | dfnul2 | ⊢ ∅  =  { 𝑥  ∣  ¬  𝑥  =  𝑥 } | 
						
							| 33 | 32 | eqcomi | ⊢ { 𝑥  ∣  ¬  𝑥  =  𝑥 }  =  ∅ | 
						
							| 34 | 33 | eqeq2i | ⊢ ( { 𝑥  ∣  𝜑 }  =  { 𝑥  ∣  ¬  𝑥  =  𝑥 }  ↔  { 𝑥  ∣  𝜑 }  =  ∅ ) | 
						
							| 35 | 30 31 34 | 3bitr2i | ⊢ ( ∀ 𝑦 ¬  𝜑  ↔  { 𝑥  ∣  𝜑 }  =  ∅ ) | 
						
							| 36 | 18 35 | orbi12i | ⊢ ( ( ∀ 𝑦 𝜑  ∨  ∀ 𝑦 ¬  𝜑 )  ↔  ( { 𝑥  ∣  𝜑 }  =  V  ∨  { 𝑥  ∣  𝜑 }  =  ∅ ) ) | 
						
							| 37 | 3 36 | mpbi | ⊢ ( { 𝑥  ∣  𝜑 }  =  V  ∨  { 𝑥  ∣  𝜑 }  =  ∅ ) |