| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv |  |-  F/ y ph | 
						
							| 2 |  | nf3 |  |-  ( F/ y ph <-> ( A. y ph \/ A. y -. ph ) ) | 
						
							| 3 | 1 2 | mpbi |  |-  ( A. y ph \/ A. y -. ph ) | 
						
							| 4 |  | tbtru |  |-  ( ph <-> ( ph <-> T. ) ) | 
						
							| 5 |  | df-clab |  |-  ( y e. { x | ph } <-> [ y / x ] ph ) | 
						
							| 6 |  | sbv |  |-  ( [ y / x ] ph <-> ph ) | 
						
							| 7 | 5 6 | bitr2i |  |-  ( ph <-> y e. { x | ph } ) | 
						
							| 8 |  | tru |  |-  T. | 
						
							| 9 |  | vextru |  |-  y e. { x | T. } | 
						
							| 10 | 8 9 | 2th |  |-  ( T. <-> y e. { x | T. } ) | 
						
							| 11 | 7 10 | bibi12i |  |-  ( ( ph <-> T. ) <-> ( y e. { x | ph } <-> y e. { x | T. } ) ) | 
						
							| 12 | 4 11 | bitri |  |-  ( ph <-> ( y e. { x | ph } <-> y e. { x | T. } ) ) | 
						
							| 13 | 12 | albii |  |-  ( A. y ph <-> A. y ( y e. { x | ph } <-> y e. { x | T. } ) ) | 
						
							| 14 |  | dfcleq |  |-  ( { x | ph } = { x | T. } <-> A. y ( y e. { x | ph } <-> y e. { x | T. } ) ) | 
						
							| 15 |  | dfv2 |  |-  _V = { x | T. } | 
						
							| 16 | 15 | eqcomi |  |-  { x | T. } = _V | 
						
							| 17 | 16 | eqeq2i |  |-  ( { x | ph } = { x | T. } <-> { x | ph } = _V ) | 
						
							| 18 | 13 14 17 | 3bitr2i |  |-  ( A. y ph <-> { x | ph } = _V ) | 
						
							| 19 |  | equid |  |-  y = y | 
						
							| 20 | 19 | nbn3 |  |-  ( -. ph <-> ( ph <-> -. y = y ) ) | 
						
							| 21 |  | df-clab |  |-  ( y e. { x | -. x = x } <-> [ y / x ] -. x = x ) | 
						
							| 22 |  | equid |  |-  x = x | 
						
							| 23 | 22 19 | 2th |  |-  ( x = x <-> y = y ) | 
						
							| 24 | 23 | notbii |  |-  ( -. x = x <-> -. y = y ) | 
						
							| 25 | 24 | a1i |  |-  ( x = y -> ( -. x = x <-> -. y = y ) ) | 
						
							| 26 | 25 | sbievw |  |-  ( [ y / x ] -. x = x <-> -. y = y ) | 
						
							| 27 | 21 26 | bitr2i |  |-  ( -. y = y <-> y e. { x | -. x = x } ) | 
						
							| 28 | 7 27 | bibi12i |  |-  ( ( ph <-> -. y = y ) <-> ( y e. { x | ph } <-> y e. { x | -. x = x } ) ) | 
						
							| 29 | 20 28 | bitri |  |-  ( -. ph <-> ( y e. { x | ph } <-> y e. { x | -. x = x } ) ) | 
						
							| 30 | 29 | albii |  |-  ( A. y -. ph <-> A. y ( y e. { x | ph } <-> y e. { x | -. x = x } ) ) | 
						
							| 31 |  | dfcleq |  |-  ( { x | ph } = { x | -. x = x } <-> A. y ( y e. { x | ph } <-> y e. { x | -. x = x } ) ) | 
						
							| 32 |  | dfnul2 |  |-  (/) = { x | -. x = x } | 
						
							| 33 | 32 | eqcomi |  |-  { x | -. x = x } = (/) | 
						
							| 34 | 33 | eqeq2i |  |-  ( { x | ph } = { x | -. x = x } <-> { x | ph } = (/) ) | 
						
							| 35 | 30 31 34 | 3bitr2i |  |-  ( A. y -. ph <-> { x | ph } = (/) ) | 
						
							| 36 | 18 35 | orbi12i |  |-  ( ( A. y ph \/ A. y -. ph ) <-> ( { x | ph } = _V \/ { x | ph } = (/) ) ) | 
						
							| 37 | 3 36 | mpbi |  |-  ( { x | ph } = _V \/ { x | ph } = (/) ) |