| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfv |
|- F/ y ph |
| 2 |
|
nf3 |
|- ( F/ y ph <-> ( A. y ph \/ A. y -. ph ) ) |
| 3 |
1 2
|
mpbi |
|- ( A. y ph \/ A. y -. ph ) |
| 4 |
|
biidd |
|- ( x = y -> ( ph <-> ph ) ) |
| 5 |
4
|
eqabcbw |
|- ( { x | ph } = { x | T. } <-> A. y ( ph <-> y e. { x | T. } ) ) |
| 6 |
|
dfv2 |
|- _V = { x | T. } |
| 7 |
6
|
eqeq2i |
|- ( { x | ph } = _V <-> { x | ph } = { x | T. } ) |
| 8 |
|
vextru |
|- y e. { x | T. } |
| 9 |
8
|
tbt |
|- ( ph <-> ( ph <-> y e. { x | T. } ) ) |
| 10 |
9
|
albii |
|- ( A. y ph <-> A. y ( ph <-> y e. { x | T. } ) ) |
| 11 |
5 7 10
|
3bitr4i |
|- ( { x | ph } = _V <-> A. y ph ) |
| 12 |
4
|
ab0w |
|- ( { x | ph } = (/) <-> A. y -. ph ) |
| 13 |
11 12
|
orbi12i |
|- ( ( { x | ph } = _V \/ { x | ph } = (/) ) <-> ( A. y ph \/ A. y -. ph ) ) |
| 14 |
3 13
|
mpbir |
|- ( { x | ph } = _V \/ { x | ph } = (/) ) |