Metamath Proof Explorer


Theorem ab0orv

Description: The class abstraction defined by a formula not containing the abstraction variable is either the empty set or the universal class. (Contributed by Mario Carneiro, 29-Aug-2013) (Revised by BJ, 22-Mar-2020) Reduce axiom usage. (Revised by GG, 30-Aug-2024)

Ref Expression
Assertion ab0orv x | φ = V x | φ =

Proof

Step Hyp Ref Expression
1 nfv y φ
2 nf3 y φ y φ y ¬ φ
3 1 2 mpbi y φ y ¬ φ
4 biidd x = y φ φ
5 4 eqabcbw x | φ = x | y φ y x |
6 dfv2 V = x |
7 6 eqeq2i x | φ = V x | φ = x |
8 vextru y x |
9 8 tbt φ φ y x |
10 9 albii y φ y φ y x |
11 5 7 10 3bitr4i x | φ = V y φ
12 4 ab0w x | φ = y ¬ φ
13 11 12 orbi12i x | φ = V x | φ = y φ y ¬ φ
14 3 13 mpbir x | φ = V x | φ =