Description: The mapping to the matrices consisting of the coefficients in the polynomial entries of a given matrix for the same power is finitely supported. (Contributed by AV, 5-Oct-2019) (Revised by AV, 3-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | decpmate.p | |- P = ( Poly1 ` R ) |
|
decpmate.c | |- C = ( N Mat P ) |
||
decpmate.b | |- B = ( Base ` C ) |
||
decpmatcl.a | |- A = ( N Mat R ) |
||
decpmatfsupp.0 | |- .0. = ( 0g ` A ) |
||
Assertion | decpmatfsupp | |- ( ( R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp .0. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decpmate.p | |- P = ( Poly1 ` R ) |
|
2 | decpmate.c | |- C = ( N Mat P ) |
|
3 | decpmate.b | |- B = ( Base ` C ) |
|
4 | decpmatcl.a | |- A = ( N Mat R ) |
|
5 | decpmatfsupp.0 | |- .0. = ( 0g ` A ) |
|
6 | 5 | fvexi | |- .0. e. _V |
7 | 6 | a1i | |- ( ( R e. Ring /\ M e. B ) -> .0. e. _V ) |
8 | ovexd | |- ( ( ( R e. Ring /\ M e. B ) /\ k e. NN0 ) -> ( M decompPMat k ) e. _V ) |
|
9 | oveq2 | |- ( k = x -> ( M decompPMat k ) = ( M decompPMat x ) ) |
|
10 | 1 2 3 4 5 | decpmataa0 | |- ( ( R e. Ring /\ M e. B ) -> E. s e. NN0 A. x e. NN0 ( s < x -> ( M decompPMat x ) = .0. ) ) |
11 | 7 8 9 10 | mptnn0fsuppd | |- ( ( R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp .0. ) |