| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decpmate.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | decpmate.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | decpmate.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | decpmatcl.a |  |-  A = ( N Mat R ) | 
						
							| 5 |  | decpmatfsupp.0 |  |-  .0. = ( 0g ` A ) | 
						
							| 6 | 5 | fvexi |  |-  .0. e. _V | 
						
							| 7 | 6 | a1i |  |-  ( ( R e. Ring /\ M e. B ) -> .0. e. _V ) | 
						
							| 8 |  | ovexd |  |-  ( ( ( R e. Ring /\ M e. B ) /\ k e. NN0 ) -> ( M decompPMat k ) e. _V ) | 
						
							| 9 |  | oveq2 |  |-  ( k = x -> ( M decompPMat k ) = ( M decompPMat x ) ) | 
						
							| 10 | 1 2 3 4 5 | decpmataa0 |  |-  ( ( R e. Ring /\ M e. B ) -> E. s e. NN0 A. x e. NN0 ( s < x -> ( M decompPMat x ) = .0. ) ) | 
						
							| 11 | 7 8 9 10 | mptnn0fsuppd |  |-  ( ( R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp .0. ) |