| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decpmate.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | decpmate.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | decpmate.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | decpmatcl.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 5 |  | decpmatfsupp.0 | ⊢  0   =  ( 0g ‘ 𝐴 ) | 
						
							| 6 | 5 | fvexi | ⊢  0   ∈  V | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →   0   ∈  V ) | 
						
							| 8 |  | ovexd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑘 )  ∈  V ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑘  =  𝑥  →  ( 𝑀  decompPMat  𝑘 )  =  ( 𝑀  decompPMat  𝑥 ) ) | 
						
							| 10 | 1 2 3 4 5 | decpmataa0 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝑀  decompPMat  𝑥 )  =   0  ) ) | 
						
							| 11 | 7 8 9 10 | mptnn0fsuppd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑀  decompPMat  𝑘 ) )  finSupp   0  ) |