| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decpmate.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | decpmate.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | decpmate.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | decpmatcl.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 5 |  | decpmatfsupp.0 | ⊢  0   =  ( 0g ‘ 𝐴 ) | 
						
							| 6 | 2 3 | matrcl | ⊢ ( 𝑀  ∈  𝐵  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  V ) ) | 
						
							| 7 | 6 | simpld | ⊢ ( 𝑀  ∈  𝐵  →  𝑁  ∈  Fin ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑁  ∈  Fin ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑀  ∈  𝐵 ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 12 | 1 2 3 11 | pmatcoe1fsupp | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 13 | 8 9 10 12 | syl3anc | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 15 | 1 2 3 4 14 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑥 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 16 | 15 | 3expa | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑥 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 17 | 8 9 | jca | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 18 | 4 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 19 | 14 5 | ring0cl | ⊢ ( 𝐴  ∈  Ring  →   0   ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 20 | 17 18 19 | 3syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →   0   ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →   0   ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 22 | 4 14 | eqmat | ⊢ ( ( ( 𝑀  decompPMat  𝑥 )  ∈  ( Base ‘ 𝐴 )  ∧   0   ∈  ( Base ‘ 𝐴 ) )  →  ( ( 𝑀  decompPMat  𝑥 )  =   0   ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  =  ( 𝑖  0  𝑗 ) ) ) | 
						
							| 23 | 16 21 22 | syl2anc | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑀  decompPMat  𝑥 )  =   0   ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  =  ( 𝑖  0  𝑗 ) ) ) | 
						
							| 24 |  | df-3an | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝑥  ∈  ℕ0 )  ↔  ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 ) ) | 
						
							| 25 | 1 2 3 | decpmate | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) ) | 
						
							| 26 | 24 25 | sylanbr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  =  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 ) ) | 
						
							| 27 | 17 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 29 | 4 11 | mat0op | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 0g ‘ 𝐴 )  =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 30 | 5 29 | eqtrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →   0   =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 31 | 28 30 | syl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →   0   =  ( 𝑎  ∈  𝑁 ,  𝑏  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 32 |  | eqidd | ⊢ ( ( ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  ∧  ( 𝑎  =  𝑖  ∧  𝑏  =  𝑗 ) )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 33 |  | simpl | ⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑖  ∈  𝑁 ) | 
						
							| 35 |  | simpr | ⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑗  ∈  𝑁 ) | 
						
							| 37 |  | fvexd | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 38 | 31 32 34 36 37 | ovmpod | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖  0  𝑗 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 39 | 26 38 | eqeq12d | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  =  ( 𝑖  0  𝑗 )  ↔  ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 40 | 39 | 2ralbidva | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( 𝑖 ( 𝑀  decompPMat  𝑥 ) 𝑗 )  =  ( 𝑖  0  𝑗 )  ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 41 | 23 40 | bitrd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑀  decompPMat  𝑥 )  =   0   ↔  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 42 | 41 | imbi2d | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑥  ∈  ℕ0 )  →  ( ( 𝑠  <  𝑥  →  ( 𝑀  decompPMat  𝑥 )  =   0  )  ↔  ( 𝑠  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 43 | 42 | ralbidva | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝑀  decompPMat  𝑥 )  =   0  )  ↔  ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 44 | 43 | rexbidv | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝑀  decompPMat  𝑥 )  =   0  )  ↔  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ∀ 𝑖  ∈  𝑁 ∀ 𝑗  ∈  𝑁 ( ( coe1 ‘ ( 𝑖 𝑀 𝑗 ) ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 45 | 13 44 | mpbird | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑥  ∈  ℕ0 ( 𝑠  <  𝑥  →  ( 𝑀  decompPMat  𝑥 )  =   0  ) ) |