| Step | Hyp | Ref | Expression | 
						
							| 1 |  | decpmate.p |  | 
						
							| 2 |  | decpmate.c |  | 
						
							| 3 |  | decpmate.b |  | 
						
							| 4 |  | decpmatcl.a |  | 
						
							| 5 |  | decpmatfsupp.0 |  | 
						
							| 6 | 2 3 | matrcl |  | 
						
							| 7 | 6 | simpld |  | 
						
							| 8 | 7 | adantl |  | 
						
							| 9 |  | simpl |  | 
						
							| 10 |  | simpr |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 1 2 3 11 | pmatcoe1fsupp |  | 
						
							| 13 | 8 9 10 12 | syl3anc |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 1 2 3 4 14 | decpmatcl |  | 
						
							| 16 | 15 | 3expa |  | 
						
							| 17 | 8 9 | jca |  | 
						
							| 18 | 4 | matring |  | 
						
							| 19 | 14 5 | ring0cl |  | 
						
							| 20 | 17 18 19 | 3syl |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 | 4 14 | eqmat |  | 
						
							| 23 | 16 21 22 | syl2anc |  | 
						
							| 24 |  | df-3an |  | 
						
							| 25 | 1 2 3 | decpmate |  | 
						
							| 26 | 24 25 | sylanbr |  | 
						
							| 27 | 17 | adantr |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 | 4 11 | mat0op |  | 
						
							| 30 | 5 29 | eqtrid |  | 
						
							| 31 | 28 30 | syl |  | 
						
							| 32 |  | eqidd |  | 
						
							| 33 |  | simpl |  | 
						
							| 34 | 33 | adantl |  | 
						
							| 35 |  | simpr |  | 
						
							| 36 | 35 | adantl |  | 
						
							| 37 |  | fvexd |  | 
						
							| 38 | 31 32 34 36 37 | ovmpod |  | 
						
							| 39 | 26 38 | eqeq12d |  | 
						
							| 40 | 39 | 2ralbidva |  | 
						
							| 41 | 23 40 | bitrd |  | 
						
							| 42 | 41 | imbi2d |  | 
						
							| 43 | 42 | ralbidva |  | 
						
							| 44 | 43 | rexbidv |  | 
						
							| 45 | 13 44 | mpbird |  |