Step |
Hyp |
Ref |
Expression |
1 |
|
mptnn0fsupp.0 |
|- ( ph -> .0. e. V ) |
2 |
|
mptnn0fsupp.c |
|- ( ( ph /\ k e. NN0 ) -> C e. B ) |
3 |
|
mptnn0fsuppd.d |
|- ( k = x -> C = D ) |
4 |
|
mptnn0fsuppd.s |
|- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> D = .0. ) ) |
5 |
|
vex |
|- x e. _V |
6 |
5 3
|
csbie |
|- [_ x / k ]_ C = D |
7 |
|
id |
|- ( D = .0. -> D = .0. ) |
8 |
6 7
|
eqtrid |
|- ( D = .0. -> [_ x / k ]_ C = .0. ) |
9 |
8
|
imim2i |
|- ( ( s < x -> D = .0. ) -> ( s < x -> [_ x / k ]_ C = .0. ) ) |
10 |
9
|
ralimi |
|- ( A. x e. NN0 ( s < x -> D = .0. ) -> A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
11 |
10
|
reximi |
|- ( E. s e. NN0 A. x e. NN0 ( s < x -> D = .0. ) -> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
12 |
4 11
|
syl |
|- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
13 |
1 2 12
|
mptnn0fsupp |
|- ( ph -> ( k e. NN0 |-> C ) finSupp .0. ) |