| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptnn0fsupp.0 |
|- ( ph -> .0. e. V ) |
| 2 |
|
mptnn0fsupp.c |
|- ( ( ph /\ k e. NN0 ) -> C e. B ) |
| 3 |
|
mptnn0fsuppr.s |
|- ( ph -> ( k e. NN0 |-> C ) finSupp .0. ) |
| 4 |
|
fsuppimp |
|- ( ( k e. NN0 |-> C ) finSupp .0. -> ( Fun ( k e. NN0 |-> C ) /\ ( ( k e. NN0 |-> C ) supp .0. ) e. Fin ) ) |
| 5 |
2
|
ralrimiva |
|- ( ph -> A. k e. NN0 C e. B ) |
| 6 |
|
eqid |
|- ( k e. NN0 |-> C ) = ( k e. NN0 |-> C ) |
| 7 |
6
|
fnmpt |
|- ( A. k e. NN0 C e. B -> ( k e. NN0 |-> C ) Fn NN0 ) |
| 8 |
5 7
|
syl |
|- ( ph -> ( k e. NN0 |-> C ) Fn NN0 ) |
| 9 |
|
nn0ex |
|- NN0 e. _V |
| 10 |
9
|
a1i |
|- ( ph -> NN0 e. _V ) |
| 11 |
1
|
elexd |
|- ( ph -> .0. e. _V ) |
| 12 |
8 10 11
|
3jca |
|- ( ph -> ( ( k e. NN0 |-> C ) Fn NN0 /\ NN0 e. _V /\ .0. e. _V ) ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( k e. NN0 |-> C ) Fn NN0 /\ NN0 e. _V /\ .0. e. _V ) ) |
| 14 |
|
suppvalfn |
|- ( ( ( k e. NN0 |-> C ) Fn NN0 /\ NN0 e. _V /\ .0. e. _V ) -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } ) |
| 15 |
13 14
|
syl |
|- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } ) |
| 16 |
|
simpr |
|- ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> x e. NN0 ) |
| 17 |
5
|
adantr |
|- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> A. k e. NN0 C e. B ) |
| 18 |
17
|
adantr |
|- ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> A. k e. NN0 C e. B ) |
| 19 |
|
rspcsbela |
|- ( ( x e. NN0 /\ A. k e. NN0 C e. B ) -> [_ x / k ]_ C e. B ) |
| 20 |
16 18 19
|
syl2anc |
|- ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> [_ x / k ]_ C e. B ) |
| 21 |
6
|
fvmpts |
|- ( ( x e. NN0 /\ [_ x / k ]_ C e. B ) -> ( ( k e. NN0 |-> C ) ` x ) = [_ x / k ]_ C ) |
| 22 |
16 20 21
|
syl2anc |
|- ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> ( ( k e. NN0 |-> C ) ` x ) = [_ x / k ]_ C ) |
| 23 |
22
|
neeq1d |
|- ( ( ( ph /\ Fun ( k e. NN0 |-> C ) ) /\ x e. NN0 ) -> ( ( ( k e. NN0 |-> C ) ` x ) =/= .0. <-> [_ x / k ]_ C =/= .0. ) ) |
| 24 |
23
|
rabbidva |
|- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> { x e. NN0 | ( ( k e. NN0 |-> C ) ` x ) =/= .0. } = { x e. NN0 | [_ x / k ]_ C =/= .0. } ) |
| 25 |
15 24
|
eqtrd |
|- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( k e. NN0 |-> C ) supp .0. ) = { x e. NN0 | [_ x / k ]_ C =/= .0. } ) |
| 26 |
25
|
eleq1d |
|- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( ( k e. NN0 |-> C ) supp .0. ) e. Fin <-> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) |
| 27 |
26
|
biimpd |
|- ( ( ph /\ Fun ( k e. NN0 |-> C ) ) -> ( ( ( k e. NN0 |-> C ) supp .0. ) e. Fin -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) |
| 28 |
27
|
expcom |
|- ( Fun ( k e. NN0 |-> C ) -> ( ph -> ( ( ( k e. NN0 |-> C ) supp .0. ) e. Fin -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) ) |
| 29 |
28
|
com23 |
|- ( Fun ( k e. NN0 |-> C ) -> ( ( ( k e. NN0 |-> C ) supp .0. ) e. Fin -> ( ph -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) ) |
| 30 |
29
|
imp |
|- ( ( Fun ( k e. NN0 |-> C ) /\ ( ( k e. NN0 |-> C ) supp .0. ) e. Fin ) -> ( ph -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) |
| 31 |
4 30
|
syl |
|- ( ( k e. NN0 |-> C ) finSupp .0. -> ( ph -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) ) |
| 32 |
3 31
|
mpcom |
|- ( ph -> { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin ) |
| 33 |
|
rabssnn0fi |
|- ( { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin <-> E. s e. NN0 A. x e. NN0 ( s < x -> -. [_ x / k ]_ C =/= .0. ) ) |
| 34 |
|
nne |
|- ( -. [_ x / k ]_ C =/= .0. <-> [_ x / k ]_ C = .0. ) |
| 35 |
34
|
imbi2i |
|- ( ( s < x -> -. [_ x / k ]_ C =/= .0. ) <-> ( s < x -> [_ x / k ]_ C = .0. ) ) |
| 36 |
35
|
ralbii |
|- ( A. x e. NN0 ( s < x -> -. [_ x / k ]_ C =/= .0. ) <-> A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
| 37 |
36
|
rexbii |
|- ( E. s e. NN0 A. x e. NN0 ( s < x -> -. [_ x / k ]_ C =/= .0. ) <-> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
| 38 |
33 37
|
bitri |
|- ( { x e. NN0 | [_ x / k ]_ C =/= .0. } e. Fin <-> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |
| 39 |
32 38
|
sylib |
|- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> [_ x / k ]_ C = .0. ) ) |