| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptnn0fsupp.0 |
⊢ ( 𝜑 → 0 ∈ 𝑉 ) |
| 2 |
|
mptnn0fsupp.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ 𝐵 ) |
| 3 |
|
mptnn0fsuppr.s |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) finSupp 0 ) |
| 4 |
|
fsuppimp |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) finSupp 0 → ( Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ∧ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) ∈ Fin ) ) |
| 5 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) |
| 6 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) = ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) |
| 7 |
6
|
fnmpt |
⊢ ( ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 → ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) Fn ℕ0 ) |
| 8 |
5 7
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) Fn ℕ0 ) |
| 9 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 11 |
1
|
elexd |
⊢ ( 𝜑 → 0 ∈ V ) |
| 12 |
8 10 11
|
3jca |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V ) ) |
| 14 |
|
suppvalfn |
⊢ ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) Fn ℕ0 ∧ ℕ0 ∈ V ∧ 0 ∈ V ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) = { 𝑥 ∈ ℕ0 ∣ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 } ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) = { 𝑥 ∈ ℕ0 ∣ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 } ) |
| 16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) ∧ 𝑥 ∈ ℕ0 ) → 𝑥 ∈ ℕ0 ) |
| 17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) → ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) |
| 18 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) ∧ 𝑥 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) |
| 19 |
|
rspcsbela |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 𝐶 ∈ 𝐵 ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 20 |
16 18 19
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) ∧ 𝑥 ∈ ℕ0 ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) |
| 21 |
6
|
fvmpts |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ 𝐵 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) = ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) |
| 22 |
16 20 21
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) = ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) |
| 23 |
22
|
neeq1d |
⊢ ( ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 ↔ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 ) ) |
| 24 |
23
|
rabbidva |
⊢ ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) → { 𝑥 ∈ ℕ0 ∣ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ‘ 𝑥 ) ≠ 0 } = { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ) |
| 25 |
15 24
|
eqtrd |
⊢ ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) = { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ) |
| 26 |
25
|
eleq1d |
⊢ ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) → ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) ∈ Fin ↔ { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ) ) |
| 27 |
26
|
biimpd |
⊢ ( ( 𝜑 ∧ Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ) → ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) ∈ Fin → { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ) ) |
| 28 |
27
|
expcom |
⊢ ( Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) → ( 𝜑 → ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) ∈ Fin → { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ) ) ) |
| 29 |
28
|
com23 |
⊢ ( Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) ∈ Fin → ( 𝜑 → { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ) ) ) |
| 30 |
29
|
imp |
⊢ ( ( Fun ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) ∧ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) supp 0 ) ∈ Fin ) → ( 𝜑 → { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ) ) |
| 31 |
4 30
|
syl |
⊢ ( ( 𝑘 ∈ ℕ0 ↦ 𝐶 ) finSupp 0 → ( 𝜑 → { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ) ) |
| 32 |
3 31
|
mpcom |
⊢ ( 𝜑 → { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ) |
| 33 |
|
rabssnn0fi |
⊢ ( { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 ) ) |
| 34 |
|
nne |
⊢ ( ¬ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 ↔ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) |
| 35 |
34
|
imbi2i |
⊢ ( ( 𝑠 < 𝑥 → ¬ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 ) ↔ ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 36 |
35
|
ralbii |
⊢ ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 ) ↔ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 37 |
36
|
rexbii |
⊢ ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 ) ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 38 |
33 37
|
bitri |
⊢ ( { 𝑥 ∈ ℕ0 ∣ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ≠ 0 } ∈ Fin ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |
| 39 |
32 38
|
sylib |
⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 = 0 ) ) |