| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ⊆ ℕ0 |
| 2 |
|
ssnn0fi |
⊢ ( { 𝑥 ∈ ℕ0 ∣ 𝜑 } ⊆ ℕ0 → ( { 𝑥 ∈ ℕ0 ∣ 𝜑 } ∈ Fin ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑠 < 𝑦 → 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ) ) ) |
| 3 |
|
nnel |
⊢ ( ¬ 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ) |
| 4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 5 |
|
nfcv |
⊢ Ⅎ 𝑥 ℕ0 |
| 6 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] ¬ 𝜑 |
| 7 |
6
|
nfn |
⊢ Ⅎ 𝑥 ¬ [ 𝑦 / 𝑥 ] ¬ 𝜑 |
| 8 |
|
sbceq2a |
⊢ ( 𝑦 = 𝑥 → ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ 𝜑 ) ) |
| 9 |
8
|
equcoms |
⊢ ( 𝑥 = 𝑦 → ( [ 𝑦 / 𝑥 ] ¬ 𝜑 ↔ ¬ 𝜑 ) ) |
| 10 |
9
|
con2bid |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ ¬ [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
| 11 |
4 5 7 10
|
elrabf |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ↔ ( 𝑦 ∈ ℕ0 ∧ ¬ [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
| 12 |
11
|
baib |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 ∈ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ↔ ¬ [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
| 13 |
3 12
|
bitrid |
⊢ ( 𝑦 ∈ ℕ0 → ( ¬ 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ↔ ¬ [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
| 14 |
13
|
con4bid |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
| 15 |
14
|
imbi2d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑠 < 𝑦 → 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ) ↔ ( 𝑠 < 𝑦 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) ) |
| 16 |
15
|
ralbiia |
⊢ ( ∀ 𝑦 ∈ ℕ0 ( 𝑠 < 𝑦 → 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ) ↔ ∀ 𝑦 ∈ ℕ0 ( 𝑠 < 𝑦 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ) |
| 17 |
|
nfv |
⊢ Ⅎ 𝑥 𝑠 < 𝑦 |
| 18 |
17 6
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑠 < 𝑦 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) |
| 19 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝑠 < 𝑥 → ¬ 𝜑 ) |
| 20 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑠 < 𝑦 ↔ 𝑠 < 𝑥 ) ) |
| 21 |
20 8
|
imbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑠 < 𝑦 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ↔ ( 𝑠 < 𝑥 → ¬ 𝜑 ) ) ) |
| 22 |
18 19 21
|
cbvralw |
⊢ ( ∀ 𝑦 ∈ ℕ0 ( 𝑠 < 𝑦 → [ 𝑦 / 𝑥 ] ¬ 𝜑 ) ↔ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ 𝜑 ) ) |
| 23 |
16 22
|
bitri |
⊢ ( ∀ 𝑦 ∈ ℕ0 ( 𝑠 < 𝑦 → 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ) ↔ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ 𝜑 ) ) |
| 24 |
23
|
a1i |
⊢ ( ( { 𝑥 ∈ ℕ0 ∣ 𝜑 } ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑦 ∈ ℕ0 ( 𝑠 < 𝑦 → 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ) ↔ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ 𝜑 ) ) ) |
| 25 |
24
|
rexbidva |
⊢ ( { 𝑥 ∈ ℕ0 ∣ 𝜑 } ⊆ ℕ0 → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑠 < 𝑦 → 𝑦 ∉ { 𝑥 ∈ ℕ0 ∣ 𝜑 } ) ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ 𝜑 ) ) ) |
| 26 |
2 25
|
bitrd |
⊢ ( { 𝑥 ∈ ℕ0 ∣ 𝜑 } ⊆ ℕ0 → ( { 𝑥 ∈ ℕ0 ∣ 𝜑 } ∈ Fin ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ 𝜑 ) ) ) |
| 27 |
1 26
|
ax-mp |
⊢ ( { 𝑥 ∈ ℕ0 ∣ 𝜑 } ∈ Fin ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ¬ 𝜑 ) ) |