| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 2 |
1
|
a1i |
⊢ ( 𝑆 = ∅ → 0 ∈ ℕ0 ) |
| 3 |
|
breq1 |
⊢ ( 𝑠 = 0 → ( 𝑠 < 𝑥 ↔ 0 < 𝑥 ) ) |
| 4 |
3
|
imbi1d |
⊢ ( 𝑠 = 0 → ( ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ↔ ( 0 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 5 |
4
|
ralbidv |
⊢ ( 𝑠 = 0 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ↔ ∀ 𝑥 ∈ ℕ0 ( 0 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑆 = ∅ ∧ 𝑠 = 0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ↔ ∀ 𝑥 ∈ ℕ0 ( 0 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 7 |
|
nnel |
⊢ ( ¬ 𝑥 ∉ 𝑆 ↔ 𝑥 ∈ 𝑆 ) |
| 8 |
|
n0i |
⊢ ( 𝑥 ∈ 𝑆 → ¬ 𝑆 = ∅ ) |
| 9 |
7 8
|
sylbi |
⊢ ( ¬ 𝑥 ∉ 𝑆 → ¬ 𝑆 = ∅ ) |
| 10 |
9
|
con4i |
⊢ ( 𝑆 = ∅ → 𝑥 ∉ 𝑆 ) |
| 11 |
10
|
a1d |
⊢ ( 𝑆 = ∅ → ( 0 < 𝑥 → 𝑥 ∉ 𝑆 ) ) |
| 12 |
11
|
ralrimivw |
⊢ ( 𝑆 = ∅ → ∀ 𝑥 ∈ ℕ0 ( 0 < 𝑥 → 𝑥 ∉ 𝑆 ) ) |
| 13 |
2 6 12
|
rspcedvd |
⊢ ( 𝑆 = ∅ → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) |
| 14 |
13
|
2a1d |
⊢ ( 𝑆 = ∅ → ( 𝑆 ⊆ ℕ0 → ( 𝑆 ∈ Fin → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) ) |
| 15 |
|
ltso |
⊢ < Or ℝ |
| 16 |
|
id |
⊢ ( 𝑆 ⊆ ℕ0 → 𝑆 ⊆ ℕ0 ) |
| 17 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
| 18 |
16 17
|
sstrdi |
⊢ ( 𝑆 ⊆ ℕ0 → 𝑆 ⊆ ℝ ) |
| 19 |
18
|
3anim3i |
⊢ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) → ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℝ ) ) |
| 20 |
|
fisup2g |
⊢ ( ( < Or ℝ ∧ ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℝ ) ) → ∃ 𝑠 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑠 → ∃ 𝑧 ∈ 𝑆 𝑦 < 𝑧 ) ) ) |
| 21 |
15 19 20
|
sylancr |
⊢ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) → ∃ 𝑠 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑠 → ∃ 𝑧 ∈ 𝑆 𝑦 < 𝑧 ) ) ) |
| 22 |
|
simp3 |
⊢ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) → 𝑆 ⊆ ℕ0 ) |
| 23 |
|
breq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑠 < 𝑦 ↔ 𝑠 < 𝑥 ) ) |
| 24 |
23
|
notbid |
⊢ ( 𝑦 = 𝑥 → ( ¬ 𝑠 < 𝑦 ↔ ¬ 𝑠 < 𝑥 ) ) |
| 25 |
24
|
rspcva |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ) → ¬ 𝑠 < 𝑥 ) |
| 26 |
25
|
2a1d |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ) → ( 𝑥 ∈ ℕ0 → ( ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → ¬ 𝑠 < 𝑥 ) ) ) |
| 27 |
26
|
expcom |
⊢ ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 → ( 𝑥 ∈ 𝑆 → ( 𝑥 ∈ ℕ0 → ( ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → ¬ 𝑠 < 𝑥 ) ) ) ) |
| 28 |
27
|
com24 |
⊢ ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 → ( ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → ( 𝑥 ∈ ℕ0 → ( 𝑥 ∈ 𝑆 → ¬ 𝑠 < 𝑥 ) ) ) ) |
| 29 |
28
|
imp31 |
⊢ ( ( ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 ∈ 𝑆 → ¬ 𝑠 < 𝑥 ) ) |
| 30 |
7 29
|
biimtrid |
⊢ ( ( ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( ¬ 𝑥 ∉ 𝑆 → ¬ 𝑠 < 𝑥 ) ) |
| 31 |
30
|
con4d |
⊢ ( ( ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) |
| 32 |
31
|
ralrimiva |
⊢ ( ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) |
| 33 |
32
|
ex |
⊢ ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 → ( ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 34 |
33
|
adantr |
⊢ ( ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑠 → ∃ 𝑧 ∈ 𝑆 𝑦 < 𝑧 ) ) → ( ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 35 |
34
|
com12 |
⊢ ( ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) ∧ 𝑠 ∈ 𝑆 ) → ( ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑠 → ∃ 𝑧 ∈ 𝑆 𝑦 < 𝑧 ) ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 36 |
35
|
reximdva |
⊢ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) → ( ∃ 𝑠 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑠 → ∃ 𝑧 ∈ 𝑆 𝑦 < 𝑧 ) ) → ∃ 𝑠 ∈ 𝑆 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 37 |
|
ssrexv |
⊢ ( 𝑆 ⊆ ℕ0 → ( ∃ 𝑠 ∈ 𝑆 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 38 |
22 36 37
|
sylsyld |
⊢ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) → ( ∃ 𝑠 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 < 𝑠 → ∃ 𝑧 ∈ 𝑆 𝑦 < 𝑧 ) ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 39 |
21 38
|
mpd |
⊢ ( ( 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0 ) → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) |
| 40 |
39
|
3exp |
⊢ ( 𝑆 ∈ Fin → ( 𝑆 ≠ ∅ → ( 𝑆 ⊆ ℕ0 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) ) |
| 41 |
40
|
com3l |
⊢ ( 𝑆 ≠ ∅ → ( 𝑆 ⊆ ℕ0 → ( 𝑆 ∈ Fin → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) ) |
| 42 |
14 41
|
pm2.61ine |
⊢ ( 𝑆 ⊆ ℕ0 → ( 𝑆 ∈ Fin → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |
| 43 |
|
fzfi |
⊢ ( 0 ... 𝑠 ) ∈ Fin |
| 44 |
|
elfz2nn0 |
⊢ ( 𝑦 ∈ ( 0 ... 𝑠 ) ↔ ( 𝑦 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ∧ 𝑦 ≤ 𝑠 ) ) |
| 45 |
44
|
notbii |
⊢ ( ¬ 𝑦 ∈ ( 0 ... 𝑠 ) ↔ ¬ ( 𝑦 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ∧ 𝑦 ≤ 𝑠 ) ) |
| 46 |
|
3ianor |
⊢ ( ¬ ( 𝑦 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ∧ 𝑦 ≤ 𝑠 ) ↔ ( ¬ 𝑦 ∈ ℕ0 ∨ ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠 ) ) |
| 47 |
|
3orass |
⊢ ( ( ¬ 𝑦 ∈ ℕ0 ∨ ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠 ) ↔ ( ¬ 𝑦 ∈ ℕ0 ∨ ( ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠 ) ) ) |
| 48 |
45 46 47
|
3bitri |
⊢ ( ¬ 𝑦 ∈ ( 0 ... 𝑠 ) ↔ ( ¬ 𝑦 ∈ ℕ0 ∨ ( ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠 ) ) ) |
| 49 |
|
ssel |
⊢ ( 𝑆 ⊆ ℕ0 → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ℕ0 ) ) |
| 50 |
49
|
adantr |
⊢ ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ℕ0 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ℕ0 ) ) |
| 52 |
51
|
con3rr3 |
⊢ ( ¬ 𝑦 ∈ ℕ0 → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) |
| 53 |
|
notnotb |
⊢ ( 𝑦 ∈ ℕ0 ↔ ¬ ¬ 𝑦 ∈ ℕ0 ) |
| 54 |
|
pm2.24 |
⊢ ( 𝑠 ∈ ℕ0 → ( ¬ 𝑠 ∈ ℕ0 → ¬ 𝑦 ∈ 𝑆 ) ) |
| 55 |
54
|
adantl |
⊢ ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ¬ 𝑠 ∈ ℕ0 → ¬ 𝑦 ∈ 𝑆 ) ) |
| 56 |
55
|
adantr |
⊢ ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ( ¬ 𝑠 ∈ ℕ0 → ¬ 𝑦 ∈ 𝑆 ) ) |
| 57 |
56
|
com12 |
⊢ ( ¬ 𝑠 ∈ ℕ0 → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) |
| 58 |
57
|
a1d |
⊢ ( ¬ 𝑠 ∈ ℕ0 → ( 𝑦 ∈ ℕ0 → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) ) |
| 59 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑠 < 𝑥 ↔ 𝑠 < 𝑦 ) ) |
| 60 |
|
neleq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∉ 𝑆 ↔ 𝑦 ∉ 𝑆 ) ) |
| 61 |
59 60
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ↔ ( 𝑠 < 𝑦 → 𝑦 ∉ 𝑆 ) ) ) |
| 62 |
61
|
rspcva |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ( 𝑠 < 𝑦 → 𝑦 ∉ 𝑆 ) ) |
| 63 |
|
nn0re |
⊢ ( 𝑠 ∈ ℕ0 → 𝑠 ∈ ℝ ) |
| 64 |
|
nn0re |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℝ ) |
| 65 |
|
ltnle |
⊢ ( ( 𝑠 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑠 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑠 ) ) |
| 66 |
63 64 65
|
syl2an |
⊢ ( ( 𝑠 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑠 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑠 ) ) |
| 67 |
|
df-nel |
⊢ ( 𝑦 ∉ 𝑆 ↔ ¬ 𝑦 ∈ 𝑆 ) |
| 68 |
67
|
a1i |
⊢ ( ( 𝑠 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 ∉ 𝑆 ↔ ¬ 𝑦 ∈ 𝑆 ) ) |
| 69 |
66 68
|
imbi12d |
⊢ ( ( 𝑠 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑠 < 𝑦 → 𝑦 ∉ 𝑆 ) ↔ ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) |
| 70 |
69
|
biimpd |
⊢ ( ( 𝑠 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑠 < 𝑦 → 𝑦 ∉ 𝑆 ) → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) |
| 71 |
70
|
ex |
⊢ ( 𝑠 ∈ ℕ0 → ( 𝑦 ∈ ℕ0 → ( ( 𝑠 < 𝑦 → 𝑦 ∉ 𝑆 ) → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) ) |
| 72 |
71
|
adantl |
⊢ ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( 𝑦 ∈ ℕ0 → ( ( 𝑠 < 𝑦 → 𝑦 ∉ 𝑆 ) → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) ) |
| 73 |
72
|
com12 |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ( 𝑠 < 𝑦 → 𝑦 ∉ 𝑆 ) → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ( 𝑠 < 𝑦 → 𝑦 ∉ 𝑆 ) → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) ) |
| 75 |
62 74
|
mpid |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) |
| 76 |
75
|
ex |
⊢ ( 𝑦 ∈ ℕ0 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) → ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) ) |
| 77 |
76
|
com13 |
⊢ ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) → ( 𝑦 ∈ ℕ0 → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) ) |
| 78 |
77
|
imp |
⊢ ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ( 𝑦 ∈ ℕ0 → ( ¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆 ) ) ) |
| 79 |
78
|
com13 |
⊢ ( ¬ 𝑦 ≤ 𝑠 → ( 𝑦 ∈ ℕ0 → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) ) |
| 80 |
58 79
|
jaoi |
⊢ ( ( ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠 ) → ( 𝑦 ∈ ℕ0 → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) ) |
| 81 |
53 80
|
biimtrrid |
⊢ ( ( ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠 ) → ( ¬ ¬ 𝑦 ∈ ℕ0 → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) ) |
| 82 |
81
|
impcom |
⊢ ( ( ¬ ¬ 𝑦 ∈ ℕ0 ∧ ( ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠 ) ) → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) |
| 83 |
52 82
|
jaoi3 |
⊢ ( ( ¬ 𝑦 ∈ ℕ0 ∨ ( ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠 ) ) → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) |
| 84 |
48 83
|
sylbi |
⊢ ( ¬ 𝑦 ∈ ( 0 ... 𝑠 ) → ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ¬ 𝑦 ∈ 𝑆 ) ) |
| 85 |
84
|
com12 |
⊢ ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ( ¬ 𝑦 ∈ ( 0 ... 𝑠 ) → ¬ 𝑦 ∈ 𝑆 ) ) |
| 86 |
85
|
con4d |
⊢ ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → ( 𝑦 ∈ 𝑆 → 𝑦 ∈ ( 0 ... 𝑠 ) ) ) |
| 87 |
86
|
ssrdv |
⊢ ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → 𝑆 ⊆ ( 0 ... 𝑠 ) ) |
| 88 |
|
ssfi |
⊢ ( ( ( 0 ... 𝑠 ) ∈ Fin ∧ 𝑆 ⊆ ( 0 ... 𝑠 ) ) → 𝑆 ∈ Fin ) |
| 89 |
43 87 88
|
sylancr |
⊢ ( ( ( 𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) → 𝑆 ∈ Fin ) |
| 90 |
89
|
rexlimdva2 |
⊢ ( 𝑆 ⊆ ℕ0 → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) → 𝑆 ∈ Fin ) ) |
| 91 |
42 90
|
impbid |
⊢ ( 𝑆 ⊆ ℕ0 → ( 𝑆 ∈ Fin ↔ ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → 𝑥 ∉ 𝑆 ) ) ) |