Step |
Hyp |
Ref |
Expression |
1 |
|
f13idfv.a |
|- A = ( 0 ... 2 ) |
2 |
|
0z |
|- 0 e. ZZ |
3 |
|
1z |
|- 1 e. ZZ |
4 |
|
2z |
|- 2 e. ZZ |
5 |
2 3 4
|
3pm3.2i |
|- ( 0 e. ZZ /\ 1 e. ZZ /\ 2 e. ZZ ) |
6 |
|
0ne1 |
|- 0 =/= 1 |
7 |
|
0ne2 |
|- 0 =/= 2 |
8 |
|
1ne2 |
|- 1 =/= 2 |
9 |
6 7 8
|
3pm3.2i |
|- ( 0 =/= 1 /\ 0 =/= 2 /\ 1 =/= 2 ) |
10 |
|
fz0tp |
|- ( 0 ... 2 ) = { 0 , 1 , 2 } |
11 |
1 10
|
eqtri |
|- A = { 0 , 1 , 2 } |
12 |
11
|
f13dfv |
|- ( ( ( 0 e. ZZ /\ 1 e. ZZ /\ 2 e. ZZ ) /\ ( 0 =/= 1 /\ 0 =/= 2 /\ 1 =/= 2 ) ) -> ( F : A -1-1-> B <-> ( F : A --> B /\ ( ( F ` 0 ) =/= ( F ` 1 ) /\ ( F ` 0 ) =/= ( F ` 2 ) /\ ( F ` 1 ) =/= ( F ` 2 ) ) ) ) ) |
13 |
5 9 12
|
mp2an |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ ( ( F ` 0 ) =/= ( F ` 1 ) /\ ( F ` 0 ) =/= ( F ` 2 ) /\ ( F ` 1 ) =/= ( F ` 2 ) ) ) ) |