| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f13dfv.a |
|- A = { X , Y , Z } |
| 2 |
|
dff14b |
|- ( F : A -1-1-> B <-> ( F : A --> B /\ A. x e. A A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) ) ) |
| 3 |
1
|
raleqi |
|- ( A. x e. A A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) <-> A. x e. { X , Y , Z } A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) ) |
| 4 |
|
sneq |
|- ( x = X -> { x } = { X } ) |
| 5 |
4
|
difeq2d |
|- ( x = X -> ( A \ { x } ) = ( A \ { X } ) ) |
| 6 |
|
fveq2 |
|- ( x = X -> ( F ` x ) = ( F ` X ) ) |
| 7 |
6
|
neeq1d |
|- ( x = X -> ( ( F ` x ) =/= ( F ` y ) <-> ( F ` X ) =/= ( F ` y ) ) ) |
| 8 |
5 7
|
raleqbidv |
|- ( x = X -> ( A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) <-> A. y e. ( A \ { X } ) ( F ` X ) =/= ( F ` y ) ) ) |
| 9 |
|
sneq |
|- ( x = Y -> { x } = { Y } ) |
| 10 |
9
|
difeq2d |
|- ( x = Y -> ( A \ { x } ) = ( A \ { Y } ) ) |
| 11 |
|
fveq2 |
|- ( x = Y -> ( F ` x ) = ( F ` Y ) ) |
| 12 |
11
|
neeq1d |
|- ( x = Y -> ( ( F ` x ) =/= ( F ` y ) <-> ( F ` Y ) =/= ( F ` y ) ) ) |
| 13 |
10 12
|
raleqbidv |
|- ( x = Y -> ( A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) <-> A. y e. ( A \ { Y } ) ( F ` Y ) =/= ( F ` y ) ) ) |
| 14 |
|
sneq |
|- ( x = Z -> { x } = { Z } ) |
| 15 |
14
|
difeq2d |
|- ( x = Z -> ( A \ { x } ) = ( A \ { Z } ) ) |
| 16 |
|
fveq2 |
|- ( x = Z -> ( F ` x ) = ( F ` Z ) ) |
| 17 |
16
|
neeq1d |
|- ( x = Z -> ( ( F ` x ) =/= ( F ` y ) <-> ( F ` Z ) =/= ( F ` y ) ) ) |
| 18 |
15 17
|
raleqbidv |
|- ( x = Z -> ( A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) <-> A. y e. ( A \ { Z } ) ( F ` Z ) =/= ( F ` y ) ) ) |
| 19 |
8 13 18
|
raltpg |
|- ( ( X e. U /\ Y e. V /\ Z e. W ) -> ( A. x e. { X , Y , Z } A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) <-> ( A. y e. ( A \ { X } ) ( F ` X ) =/= ( F ` y ) /\ A. y e. ( A \ { Y } ) ( F ` Y ) =/= ( F ` y ) /\ A. y e. ( A \ { Z } ) ( F ` Z ) =/= ( F ` y ) ) ) ) |
| 20 |
19
|
adantr |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. x e. { X , Y , Z } A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) <-> ( A. y e. ( A \ { X } ) ( F ` X ) =/= ( F ` y ) /\ A. y e. ( A \ { Y } ) ( F ` Y ) =/= ( F ` y ) /\ A. y e. ( A \ { Z } ) ( F ` Z ) =/= ( F ` y ) ) ) ) |
| 21 |
1
|
difeq1i |
|- ( A \ { X } ) = ( { X , Y , Z } \ { X } ) |
| 22 |
|
tprot |
|- { X , Y , Z } = { Y , Z , X } |
| 23 |
22
|
difeq1i |
|- ( { X , Y , Z } \ { X } ) = ( { Y , Z , X } \ { X } ) |
| 24 |
|
necom |
|- ( X =/= Y <-> Y =/= X ) |
| 25 |
|
necom |
|- ( X =/= Z <-> Z =/= X ) |
| 26 |
24 25
|
anbi12i |
|- ( ( X =/= Y /\ X =/= Z ) <-> ( Y =/= X /\ Z =/= X ) ) |
| 27 |
26
|
biimpi |
|- ( ( X =/= Y /\ X =/= Z ) -> ( Y =/= X /\ Z =/= X ) ) |
| 28 |
27
|
3adant3 |
|- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( Y =/= X /\ Z =/= X ) ) |
| 29 |
|
diftpsn3 |
|- ( ( Y =/= X /\ Z =/= X ) -> ( { Y , Z , X } \ { X } ) = { Y , Z } ) |
| 30 |
28 29
|
syl |
|- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( { Y , Z , X } \ { X } ) = { Y , Z } ) |
| 31 |
23 30
|
eqtrid |
|- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( { X , Y , Z } \ { X } ) = { Y , Z } ) |
| 32 |
21 31
|
eqtrid |
|- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( A \ { X } ) = { Y , Z } ) |
| 33 |
32
|
adantl |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A \ { X } ) = { Y , Z } ) |
| 34 |
33
|
raleqdv |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. ( A \ { X } ) ( F ` X ) =/= ( F ` y ) <-> A. y e. { Y , Z } ( F ` X ) =/= ( F ` y ) ) ) |
| 35 |
|
fveq2 |
|- ( y = Y -> ( F ` y ) = ( F ` Y ) ) |
| 36 |
35
|
neeq2d |
|- ( y = Y -> ( ( F ` X ) =/= ( F ` y ) <-> ( F ` X ) =/= ( F ` Y ) ) ) |
| 37 |
|
fveq2 |
|- ( y = Z -> ( F ` y ) = ( F ` Z ) ) |
| 38 |
37
|
neeq2d |
|- ( y = Z -> ( ( F ` X ) =/= ( F ` y ) <-> ( F ` X ) =/= ( F ` Z ) ) ) |
| 39 |
36 38
|
ralprg |
|- ( ( Y e. V /\ Z e. W ) -> ( A. y e. { Y , Z } ( F ` X ) =/= ( F ` y ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) ) ) |
| 40 |
39
|
3adant1 |
|- ( ( X e. U /\ Y e. V /\ Z e. W ) -> ( A. y e. { Y , Z } ( F ` X ) =/= ( F ` y ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) ) ) |
| 41 |
40
|
adantr |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. { Y , Z } ( F ` X ) =/= ( F ` y ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) ) ) |
| 42 |
34 41
|
bitrd |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. ( A \ { X } ) ( F ` X ) =/= ( F ` y ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) ) ) |
| 43 |
1
|
difeq1i |
|- ( A \ { Y } ) = ( { X , Y , Z } \ { Y } ) |
| 44 |
|
tpcomb |
|- { X , Y , Z } = { X , Z , Y } |
| 45 |
44
|
difeq1i |
|- ( { X , Y , Z } \ { Y } ) = ( { X , Z , Y } \ { Y } ) |
| 46 |
|
necom |
|- ( Y =/= Z <-> Z =/= Y ) |
| 47 |
46
|
biimpi |
|- ( Y =/= Z -> Z =/= Y ) |
| 48 |
47
|
anim2i |
|- ( ( X =/= Y /\ Y =/= Z ) -> ( X =/= Y /\ Z =/= Y ) ) |
| 49 |
48
|
3adant2 |
|- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( X =/= Y /\ Z =/= Y ) ) |
| 50 |
|
diftpsn3 |
|- ( ( X =/= Y /\ Z =/= Y ) -> ( { X , Z , Y } \ { Y } ) = { X , Z } ) |
| 51 |
49 50
|
syl |
|- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( { X , Z , Y } \ { Y } ) = { X , Z } ) |
| 52 |
45 51
|
eqtrid |
|- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( { X , Y , Z } \ { Y } ) = { X , Z } ) |
| 53 |
43 52
|
eqtrid |
|- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( A \ { Y } ) = { X , Z } ) |
| 54 |
53
|
adantl |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A \ { Y } ) = { X , Z } ) |
| 55 |
54
|
raleqdv |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. ( A \ { Y } ) ( F ` Y ) =/= ( F ` y ) <-> A. y e. { X , Z } ( F ` Y ) =/= ( F ` y ) ) ) |
| 56 |
|
fveq2 |
|- ( y = X -> ( F ` y ) = ( F ` X ) ) |
| 57 |
56
|
neeq2d |
|- ( y = X -> ( ( F ` Y ) =/= ( F ` y ) <-> ( F ` Y ) =/= ( F ` X ) ) ) |
| 58 |
37
|
neeq2d |
|- ( y = Z -> ( ( F ` Y ) =/= ( F ` y ) <-> ( F ` Y ) =/= ( F ` Z ) ) ) |
| 59 |
57 58
|
ralprg |
|- ( ( X e. U /\ Z e. W ) -> ( A. y e. { X , Z } ( F ` Y ) =/= ( F ` y ) <-> ( ( F ` Y ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) |
| 60 |
59
|
3adant2 |
|- ( ( X e. U /\ Y e. V /\ Z e. W ) -> ( A. y e. { X , Z } ( F ` Y ) =/= ( F ` y ) <-> ( ( F ` Y ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) |
| 61 |
60
|
adantr |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. { X , Z } ( F ` Y ) =/= ( F ` y ) <-> ( ( F ` Y ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) |
| 62 |
55 61
|
bitrd |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. ( A \ { Y } ) ( F ` Y ) =/= ( F ` y ) <-> ( ( F ` Y ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) |
| 63 |
1
|
difeq1i |
|- ( A \ { Z } ) = ( { X , Y , Z } \ { Z } ) |
| 64 |
|
diftpsn3 |
|- ( ( X =/= Z /\ Y =/= Z ) -> ( { X , Y , Z } \ { Z } ) = { X , Y } ) |
| 65 |
64
|
3adant1 |
|- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( { X , Y , Z } \ { Z } ) = { X , Y } ) |
| 66 |
63 65
|
eqtrid |
|- ( ( X =/= Y /\ X =/= Z /\ Y =/= Z ) -> ( A \ { Z } ) = { X , Y } ) |
| 67 |
66
|
adantl |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A \ { Z } ) = { X , Y } ) |
| 68 |
67
|
raleqdv |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. ( A \ { Z } ) ( F ` Z ) =/= ( F ` y ) <-> A. y e. { X , Y } ( F ` Z ) =/= ( F ` y ) ) ) |
| 69 |
56
|
neeq2d |
|- ( y = X -> ( ( F ` Z ) =/= ( F ` y ) <-> ( F ` Z ) =/= ( F ` X ) ) ) |
| 70 |
35
|
neeq2d |
|- ( y = Y -> ( ( F ` Z ) =/= ( F ` y ) <-> ( F ` Z ) =/= ( F ` Y ) ) ) |
| 71 |
69 70
|
ralprg |
|- ( ( X e. U /\ Y e. V ) -> ( A. y e. { X , Y } ( F ` Z ) =/= ( F ` y ) <-> ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) ) |
| 72 |
71
|
3adant3 |
|- ( ( X e. U /\ Y e. V /\ Z e. W ) -> ( A. y e. { X , Y } ( F ` Z ) =/= ( F ` y ) <-> ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) ) |
| 73 |
72
|
adantr |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. { X , Y } ( F ` Z ) =/= ( F ` y ) <-> ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) ) |
| 74 |
68 73
|
bitrd |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. y e. ( A \ { Z } ) ( F ` Z ) =/= ( F ` y ) <-> ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) ) |
| 75 |
42 62 74
|
3anbi123d |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( ( A. y e. ( A \ { X } ) ( F ` X ) =/= ( F ` y ) /\ A. y e. ( A \ { Y } ) ( F ` Y ) =/= ( F ` y ) /\ A. y e. ( A \ { Z } ) ( F ` Z ) =/= ( F ` y ) ) <-> ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) /\ ( ( F ` Y ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) /\ ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) ) ) |
| 76 |
|
ancom |
|- ( ( ( F ` Y ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) <-> ( ( F ` Y ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` X ) ) ) |
| 77 |
76
|
3anbi2i |
|- ( ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) /\ ( ( F ` Y ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) /\ ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) <-> ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) /\ ( ( F ` Y ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` X ) ) /\ ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) ) |
| 78 |
|
3an6 |
|- ( ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) /\ ( ( F ` Y ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` X ) ) /\ ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) <-> ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) /\ ( F ` Z ) =/= ( F ` X ) ) /\ ( ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) ) |
| 79 |
|
3anrot |
|- ( ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) /\ ( F ` Z ) =/= ( F ` X ) ) ) |
| 80 |
79
|
bicomi |
|- ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) /\ ( F ` Z ) =/= ( F ` X ) ) <-> ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) |
| 81 |
|
necom |
|- ( ( F ` X ) =/= ( F ` Z ) <-> ( F ` Z ) =/= ( F ` X ) ) |
| 82 |
|
necom |
|- ( ( F ` Y ) =/= ( F ` X ) <-> ( F ` X ) =/= ( F ` Y ) ) |
| 83 |
|
necom |
|- ( ( F ` Z ) =/= ( F ` Y ) <-> ( F ` Y ) =/= ( F ` Z ) ) |
| 84 |
81 82 83
|
3anbi123i |
|- ( ( ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) <-> ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) |
| 85 |
80 84
|
anbi12i |
|- ( ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) /\ ( F ` Z ) =/= ( F ` X ) ) /\ ( ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) <-> ( ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) /\ ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) |
| 86 |
|
anidm |
|- ( ( ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) /\ ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) <-> ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) |
| 87 |
|
3ancoma |
|- ( ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` Z ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) |
| 88 |
|
necom |
|- ( ( F ` Z ) =/= ( F ` X ) <-> ( F ` X ) =/= ( F ` Z ) ) |
| 89 |
88
|
3anbi2i |
|- ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` Z ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) |
| 90 |
87 89
|
bitri |
|- ( ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) |
| 91 |
85 86 90
|
3bitri |
|- ( ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` Y ) =/= ( F ` Z ) /\ ( F ` Z ) =/= ( F ` X ) ) /\ ( ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) |
| 92 |
77 78 91
|
3bitri |
|- ( ( ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) ) /\ ( ( F ` Y ) =/= ( F ` X ) /\ ( F ` Y ) =/= ( F ` Z ) ) /\ ( ( F ` Z ) =/= ( F ` X ) /\ ( F ` Z ) =/= ( F ` Y ) ) ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) |
| 93 |
75 92
|
bitrdi |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( ( A. y e. ( A \ { X } ) ( F ` X ) =/= ( F ` y ) /\ A. y e. ( A \ { Y } ) ( F ` Y ) =/= ( F ` y ) /\ A. y e. ( A \ { Z } ) ( F ` Z ) =/= ( F ` y ) ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) |
| 94 |
20 93
|
bitrd |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. x e. { X , Y , Z } A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) |
| 95 |
3 94
|
bitrid |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( A. x e. A A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) <-> ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) |
| 96 |
95
|
anbi2d |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( ( F : A --> B /\ A. x e. A A. y e. ( A \ { x } ) ( F ` x ) =/= ( F ` y ) ) <-> ( F : A --> B /\ ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) ) |
| 97 |
2 96
|
bitrid |
|- ( ( ( X e. U /\ Y e. V /\ Z e. W ) /\ ( X =/= Y /\ X =/= Z /\ Y =/= Z ) ) -> ( F : A -1-1-> B <-> ( F : A --> B /\ ( ( F ` X ) =/= ( F ` Y ) /\ ( F ` X ) =/= ( F ` Z ) /\ ( F ` Y ) =/= ( F ` Z ) ) ) ) ) |