Metamath Proof Explorer


Theorem mptnn0fsuppd

Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 2-Dec-2019) (Revised by AV, 23-Dec-2019)

Ref Expression
Hypotheses mptnn0fsupp.0 φ0˙V
mptnn0fsupp.c φk0CB
mptnn0fsuppd.d k=xC=D
mptnn0fsuppd.s φs0x0s<xD=0˙
Assertion mptnn0fsuppd φfinSupp0˙k0C

Proof

Step Hyp Ref Expression
1 mptnn0fsupp.0 φ0˙V
2 mptnn0fsupp.c φk0CB
3 mptnn0fsuppd.d k=xC=D
4 mptnn0fsuppd.s φs0x0s<xD=0˙
5 vex xV
6 5 3 csbie x/kC=D
7 id D=0˙D=0˙
8 6 7 eqtrid D=0˙x/kC=0˙
9 8 imim2i s<xD=0˙s<xx/kC=0˙
10 9 ralimi x0s<xD=0˙x0s<xx/kC=0˙
11 10 reximi s0x0s<xD=0˙s0x0s<xx/kC=0˙
12 4 11 syl φs0x0s<xx/kC=0˙
13 1 2 12 mptnn0fsupp φfinSupp0˙k0C