Metamath Proof Explorer


Theorem mptnn0fsupp

Description: A mapping from the nonnegative integers is finitely supported under certain conditions. (Contributed by AV, 5-Oct-2019) (Revised by AV, 23-Dec-2019)

Ref Expression
Hypotheses mptnn0fsupp.0 φ0˙V
mptnn0fsupp.c φk0CB
mptnn0fsupp.s φs0x0s<xx/kC=0˙
Assertion mptnn0fsupp φfinSupp0˙k0C

Proof

Step Hyp Ref Expression
1 mptnn0fsupp.0 φ0˙V
2 mptnn0fsupp.c φk0CB
3 mptnn0fsupp.s φs0x0s<xx/kC=0˙
4 2 ralrimiva φk0CB
5 eqid k0C=k0C
6 5 fnmpt k0CBk0CFn0
7 4 6 syl φk0CFn0
8 nn0ex 0V
9 8 a1i φ0V
10 1 elexd φ0˙V
11 suppvalfn k0CFn00V0˙Vk0Csupp0˙=x0|k0Cx0˙
12 7 9 10 11 syl3anc φk0Csupp0˙=x0|k0Cx0˙
13 nne ¬k0Cx0˙k0Cx=0˙
14 simpr φs0x0x0
15 4 ad2antrr φs0x0k0CB
16 rspcsbela x0k0CBx/kCB
17 14 15 16 syl2anc φs0x0x/kCB
18 5 fvmpts x0x/kCBk0Cx=x/kC
19 14 17 18 syl2anc φs0x0k0Cx=x/kC
20 19 eqeq1d φs0x0k0Cx=0˙x/kC=0˙
21 13 20 bitrid φs0x0¬k0Cx0˙x/kC=0˙
22 21 imbi2d φs0x0s<x¬k0Cx0˙s<xx/kC=0˙
23 22 ralbidva φs0x0s<x¬k0Cx0˙x0s<xx/kC=0˙
24 23 rexbidva φs0x0s<x¬k0Cx0˙s0x0s<xx/kC=0˙
25 3 24 mpbird φs0x0s<x¬k0Cx0˙
26 rabssnn0fi x0|k0Cx0˙Fins0x0s<x¬k0Cx0˙
27 25 26 sylibr φx0|k0Cx0˙Fin
28 12 27 eqeltrd φk0Csupp0˙Fin
29 funmpt Funk0C
30 8 mptex k0CV
31 funisfsupp Funk0Ck0CV0˙VfinSupp0˙k0Ck0Csupp0˙Fin
32 29 30 10 31 mp3an12i φfinSupp0˙k0Ck0Csupp0˙Fin
33 28 32 mpbird φfinSupp0˙k0C