Metamath Proof Explorer


Theorem pm2mpf1

Description: The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 14-Oct-2019) (Revised by AV, 6-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p P=Poly1R
pm2mpval.c C=NMatP
pm2mpval.b B=BaseC
pm2mpval.m ˙=Q
pm2mpval.e ×˙=mulGrpQ
pm2mpval.x X=var1A
pm2mpval.a A=NMatR
pm2mpval.q Q=Poly1A
pm2mpval.t T=NpMatToMatPolyR
pm2mpcl.l L=BaseQ
Assertion pm2mpf1 NFinRRingT:B1-1L

Proof

Step Hyp Ref Expression
1 pm2mpval.p P=Poly1R
2 pm2mpval.c C=NMatP
3 pm2mpval.b B=BaseC
4 pm2mpval.m ˙=Q
5 pm2mpval.e ×˙=mulGrpQ
6 pm2mpval.x X=var1A
7 pm2mpval.a A=NMatR
8 pm2mpval.q Q=Poly1A
9 pm2mpval.t T=NpMatToMatPolyR
10 pm2mpcl.l L=BaseQ
11 1 2 3 4 5 6 7 8 9 10 pm2mpf NFinRRingT:BL
12 7 matring NFinRRingARing
13 12 adantr NFinRRinguBwBARing
14 1 2 3 4 5 6 7 8 9 10 pm2mpcl NFinRRinguBTuL
15 14 3expa NFinRRinguBTuL
16 15 adantrr NFinRRinguBwBTuL
17 1 2 3 4 5 6 7 8 9 10 pm2mpcl NFinRRingwBTwL
18 17 3expia NFinRRingwBTwL
19 18 adantld NFinRRinguBwBTwL
20 19 imp NFinRRinguBwBTwL
21 eqid coe1Tu=coe1Tu
22 eqid coe1Tw=coe1Tw
23 8 10 21 22 ply1coe1eq ARingTuLTwLn0coe1Tun=coe1TwnTu=Tw
24 23 bicomd ARingTuLTwLTu=Twn0coe1Tun=coe1Twn
25 13 16 20 24 syl3anc NFinRRinguBwBTu=Twn0coe1Tun=coe1Twn
26 simpll NFinRRinguBwBNFin
27 simplr NFinRRinguBwBRRing
28 simprl NFinRRinguBwBuB
29 1 2 3 4 5 6 7 8 9 pm2mpfval NFinRRinguBTu=Qk0udecompPMatk˙k×˙X
30 26 27 28 29 syl3anc NFinRRinguBwBTu=Qk0udecompPMatk˙k×˙X
31 30 ad2antrr NFinRRinguBwBaNbNn0Tu=Qk0udecompPMatk˙k×˙X
32 31 fveq2d NFinRRinguBwBaNbNn0coe1Tu=coe1Qk0udecompPMatk˙k×˙X
33 32 fveq1d NFinRRinguBwBaNbNn0coe1Tun=coe1Qk0udecompPMatk˙k×˙Xn
34 simplll NFinRRinguBwBaNbNn0NFinRRing
35 28 adantr NFinRRinguBwBaNbNuB
36 35 anim1i NFinRRinguBwBaNbNn0uBn0
37 1 2 3 4 5 6 7 8 pm2mpf1lem NFinRRinguBn0coe1Qk0udecompPMatk˙k×˙Xn=udecompPMatn
38 34 36 37 syl2anc NFinRRinguBwBaNbNn0coe1Qk0udecompPMatk˙k×˙Xn=udecompPMatn
39 33 38 eqtrd NFinRRinguBwBaNbNn0coe1Tun=udecompPMatn
40 simprr NFinRRinguBwBwB
41 1 2 3 4 5 6 7 8 9 pm2mpfval NFinRRingwBTw=Qk0wdecompPMatk˙k×˙X
42 26 27 40 41 syl3anc NFinRRinguBwBTw=Qk0wdecompPMatk˙k×˙X
43 42 fveq2d NFinRRinguBwBcoe1Tw=coe1Qk0wdecompPMatk˙k×˙X
44 43 fveq1d NFinRRinguBwBcoe1Twn=coe1Qk0wdecompPMatk˙k×˙Xn
45 44 ad2antrr NFinRRinguBwBaNbNn0coe1Twn=coe1Qk0wdecompPMatk˙k×˙Xn
46 40 adantr NFinRRinguBwBaNbNwB
47 46 anim1i NFinRRinguBwBaNbNn0wBn0
48 1 2 3 4 5 6 7 8 pm2mpf1lem NFinRRingwBn0coe1Qk0wdecompPMatk˙k×˙Xn=wdecompPMatn
49 34 47 48 syl2anc NFinRRinguBwBaNbNn0coe1Qk0wdecompPMatk˙k×˙Xn=wdecompPMatn
50 45 49 eqtrd NFinRRinguBwBaNbNn0coe1Twn=wdecompPMatn
51 39 50 eqeq12d NFinRRinguBwBaNbNn0coe1Tun=coe1TwnudecompPMatn=wdecompPMatn
52 2 3 decpmatval uBn0udecompPMatn=iN,jNcoe1iujn
53 28 52 sylan NFinRRinguBwBn0udecompPMatn=iN,jNcoe1iujn
54 2 3 decpmatval wBn0wdecompPMatn=iN,jNcoe1iwjn
55 40 54 sylan NFinRRinguBwBn0wdecompPMatn=iN,jNcoe1iwjn
56 53 55 eqeq12d NFinRRinguBwBn0udecompPMatn=wdecompPMatniN,jNcoe1iujn=iN,jNcoe1iwjn
57 eqid BaseR=BaseR
58 eqid BaseA=BaseA
59 simplll NFinRRinguBwBn0NFin
60 simpllr NFinRRinguBwBn0RRing
61 eqid BaseP=BaseP
62 simp2 NFinRRinguBwBn0iNjNiN
63 simp3 NFinRRinguBwBn0iNjNjN
64 3 eleq2i uBuBaseC
65 64 biimpi uBuBaseC
66 65 adantr uBwBuBaseC
67 66 ad2antlr NFinRRinguBwBn0uBaseC
68 67 3ad2ant1 NFinRRinguBwBn0iNjNuBaseC
69 68 3 eleqtrrdi NFinRRinguBwBn0iNjNuB
70 2 61 3 62 63 69 matecld NFinRRinguBwBn0iNjNiujBaseP
71 simp1r NFinRRinguBwBn0iNjNn0
72 eqid coe1iuj=coe1iuj
73 72 61 1 57 coe1fvalcl iujBasePn0coe1iujnBaseR
74 70 71 73 syl2anc NFinRRinguBwBn0iNjNcoe1iujnBaseR
75 7 57 58 59 60 74 matbas2d NFinRRinguBwBn0iN,jNcoe1iujnBaseA
76 3 eleq2i wBwBaseC
77 76 biimpi wBwBaseC
78 77 ad2antll NFinRRinguBwBwBaseC
79 78 adantr NFinRRinguBwBn0wBaseC
80 79 3ad2ant1 NFinRRinguBwBn0iNjNwBaseC
81 80 3 eleqtrrdi NFinRRinguBwBn0iNjNwB
82 2 61 3 62 63 81 matecld NFinRRinguBwBn0iNjNiwjBaseP
83 eqid coe1iwj=coe1iwj
84 83 61 1 57 coe1fvalcl iwjBasePn0coe1iwjnBaseR
85 82 71 84 syl2anc NFinRRinguBwBn0iNjNcoe1iwjnBaseR
86 7 57 58 59 60 85 matbas2d NFinRRinguBwBn0iN,jNcoe1iwjnBaseA
87 7 58 eqmat iN,jNcoe1iujnBaseAiN,jNcoe1iwjnBaseAiN,jNcoe1iujn=iN,jNcoe1iwjnxNyNxiN,jNcoe1iujny=xiN,jNcoe1iwjny
88 75 86 87 syl2anc NFinRRinguBwBn0iN,jNcoe1iujn=iN,jNcoe1iwjnxNyNxiN,jNcoe1iujny=xiN,jNcoe1iwjny
89 56 88 bitrd NFinRRinguBwBn0udecompPMatn=wdecompPMatnxNyNxiN,jNcoe1iujny=xiN,jNcoe1iwjny
90 89 adantlr NFinRRinguBwBaNbNn0udecompPMatn=wdecompPMatnxNyNxiN,jNcoe1iujny=xiN,jNcoe1iwjny
91 oveq1 x=axiN,jNcoe1iujny=aiN,jNcoe1iujny
92 oveq1 x=axiN,jNcoe1iwjny=aiN,jNcoe1iwjny
93 91 92 eqeq12d x=axiN,jNcoe1iujny=xiN,jNcoe1iwjnyaiN,jNcoe1iujny=aiN,jNcoe1iwjny
94 oveq2 y=baiN,jNcoe1iujny=aiN,jNcoe1iujnb
95 oveq2 y=baiN,jNcoe1iwjny=aiN,jNcoe1iwjnb
96 94 95 eqeq12d y=baiN,jNcoe1iujny=aiN,jNcoe1iwjnyaiN,jNcoe1iujnb=aiN,jNcoe1iwjnb
97 93 96 rspc2va aNbNxNyNxiN,jNcoe1iujny=xiN,jNcoe1iwjnyaiN,jNcoe1iujnb=aiN,jNcoe1iwjnb
98 eqidd aNbNNFinRRinguBwBn0iN,jNcoe1iujn=iN,jNcoe1iujn
99 oveq12 i=aj=biuj=aub
100 99 fveq2d i=aj=bcoe1iuj=coe1aub
101 100 fveq1d i=aj=bcoe1iujn=coe1aubn
102 101 adantl aNbNNFinRRinguBwBn0i=aj=bcoe1iujn=coe1aubn
103 simplll aNbNNFinRRinguBwBn0aN
104 simpllr aNbNNFinRRinguBwBn0bN
105 fvexd aNbNNFinRRinguBwBn0coe1aubnV
106 98 102 103 104 105 ovmpod aNbNNFinRRinguBwBn0aiN,jNcoe1iujnb=coe1aubn
107 eqidd aNbNNFinRRinguBwBn0iN,jNcoe1iwjn=iN,jNcoe1iwjn
108 oveq12 i=aj=biwj=awb
109 108 fveq2d i=aj=bcoe1iwj=coe1awb
110 109 fveq1d i=aj=bcoe1iwjn=coe1awbn
111 110 adantl aNbNNFinRRinguBwBn0i=aj=bcoe1iwjn=coe1awbn
112 fvexd aNbNNFinRRinguBwBn0coe1awbnV
113 107 111 103 104 112 ovmpod aNbNNFinRRinguBwBn0aiN,jNcoe1iwjnb=coe1awbn
114 106 113 eqeq12d aNbNNFinRRinguBwBn0aiN,jNcoe1iujnb=aiN,jNcoe1iwjnbcoe1aubn=coe1awbn
115 114 biimpd aNbNNFinRRinguBwBn0aiN,jNcoe1iujnb=aiN,jNcoe1iwjnbcoe1aubn=coe1awbn
116 115 exp31 aNbNNFinRRinguBwBn0aiN,jNcoe1iujnb=aiN,jNcoe1iwjnbcoe1aubn=coe1awbn
117 116 com14 aiN,jNcoe1iujnb=aiN,jNcoe1iwjnbNFinRRinguBwBn0aNbNcoe1aubn=coe1awbn
118 97 117 syl aNbNxNyNxiN,jNcoe1iujny=xiN,jNcoe1iwjnyNFinRRinguBwBn0aNbNcoe1aubn=coe1awbn
119 118 ex aNbNxNyNxiN,jNcoe1iujny=xiN,jNcoe1iwjnyNFinRRinguBwBn0aNbNcoe1aubn=coe1awbn
120 119 com25 aNbNaNbNNFinRRinguBwBn0xNyNxiN,jNcoe1iujny=xiN,jNcoe1iwjnycoe1aubn=coe1awbn
121 120 pm2.43i aNbNNFinRRinguBwBn0xNyNxiN,jNcoe1iujny=xiN,jNcoe1iwjnycoe1aubn=coe1awbn
122 121 impcom NFinRRinguBwBaNbNn0xNyNxiN,jNcoe1iujny=xiN,jNcoe1iwjnycoe1aubn=coe1awbn
123 122 imp NFinRRinguBwBaNbNn0xNyNxiN,jNcoe1iujny=xiN,jNcoe1iwjnycoe1aubn=coe1awbn
124 90 123 sylbid NFinRRinguBwBaNbNn0udecompPMatn=wdecompPMatncoe1aubn=coe1awbn
125 51 124 sylbid NFinRRinguBwBaNbNn0coe1Tun=coe1Twncoe1aubn=coe1awbn
126 125 ralimdva NFinRRinguBwBaNbNn0coe1Tun=coe1Twnn0coe1aubn=coe1awbn
127 126 impancom NFinRRinguBwBn0coe1Tun=coe1TwnaNbNn0coe1aubn=coe1awbn
128 127 imp NFinRRinguBwBn0coe1Tun=coe1TwnaNbNn0coe1aubn=coe1awbn
129 27 ad2antrr NFinRRinguBwBn0coe1Tun=coe1TwnaNbNRRing
130 simprl NFinRRinguBwBn0coe1Tun=coe1TwnaNbNaN
131 simprr NFinRRinguBwBn0coe1Tun=coe1TwnaNbNbN
132 66 ad2antlr NFinRRinguBwBn0coe1Tun=coe1TwnuBaseC
133 132 adantr NFinRRinguBwBn0coe1Tun=coe1TwnaNbNuBaseC
134 133 3 eleqtrrdi NFinRRinguBwBn0coe1Tun=coe1TwnaNbNuB
135 2 61 3 130 131 134 matecld NFinRRinguBwBn0coe1Tun=coe1TwnaNbNaubBaseP
136 78 ad2antrr NFinRRinguBwBn0coe1Tun=coe1TwnaNbNwBaseC
137 136 3 eleqtrrdi NFinRRinguBwBn0coe1Tun=coe1TwnaNbNwB
138 2 61 3 130 131 137 matecld NFinRRinguBwBn0coe1Tun=coe1TwnaNbNawbBaseP
139 eqid coe1aub=coe1aub
140 eqid coe1awb=coe1awb
141 1 61 139 140 ply1coe1eq RRingaubBasePawbBasePn0coe1aubn=coe1awbnaub=awb
142 141 bicomd RRingaubBasePawbBasePaub=awbn0coe1aubn=coe1awbn
143 129 135 138 142 syl3anc NFinRRinguBwBn0coe1Tun=coe1TwnaNbNaub=awbn0coe1aubn=coe1awbn
144 128 143 mpbird NFinRRinguBwBn0coe1Tun=coe1TwnaNbNaub=awb
145 144 ralrimivva NFinRRinguBwBn0coe1Tun=coe1TwnaNbNaub=awb
146 2 3 eqmat uBwBu=waNbNaub=awb
147 146 ad2antlr NFinRRinguBwBn0coe1Tun=coe1Twnu=waNbNaub=awb
148 145 147 mpbird NFinRRinguBwBn0coe1Tun=coe1Twnu=w
149 148 ex NFinRRinguBwBn0coe1Tun=coe1Twnu=w
150 25 149 sylbid NFinRRinguBwBTu=Twu=w
151 150 ralrimivva NFinRRinguBwBTu=Twu=w
152 dff13 T:B1-1LT:BLuBwBTu=Twu=w
153 11 151 152 sylanbrc NFinRRingT:B1-1L