Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpval.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pm2mpval.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pm2mpval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
pm2mpval.m |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
5 |
|
pm2mpval.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
6 |
|
pm2mpval.x |
⊢ 𝑋 = ( var1 ‘ 𝐴 ) |
7 |
|
pm2mpval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
8 |
|
pm2mpval.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
9 |
|
pm2mpval.t |
⊢ 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 ) |
10 |
|
pm2mpcl.l |
⊢ 𝐿 = ( Base ‘ 𝑄 ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
pm2mpf |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵 ⟶ 𝐿 ) |
12 |
7
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝐴 ∈ Ring ) |
14 |
1 2 3 4 5 6 7 8 9 10
|
pm2mpcl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑢 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑢 ) ∈ 𝐿 ) |
15 |
14
|
3expa |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑢 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑢 ) ∈ 𝐿 ) |
16 |
15
|
adantrr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑢 ) ∈ 𝐿 ) |
17 |
1 2 3 4 5 6 7 8 9 10
|
pm2mpcl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑤 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑤 ) ∈ 𝐿 ) |
18 |
17
|
3expia |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑤 ∈ 𝐵 → ( 𝑇 ‘ 𝑤 ) ∈ 𝐿 ) ) |
19 |
18
|
adantld |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑤 ) ∈ 𝐿 ) ) |
20 |
19
|
imp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑤 ) ∈ 𝐿 ) |
21 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) = ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) |
22 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) = ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) |
23 |
8 10 21 22
|
ply1coe1eq |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝑇 ‘ 𝑢 ) ∈ 𝐿 ∧ ( 𝑇 ‘ 𝑤 ) ∈ 𝐿 ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ↔ ( 𝑇 ‘ 𝑢 ) = ( 𝑇 ‘ 𝑤 ) ) ) |
24 |
23
|
bicomd |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝑇 ‘ 𝑢 ) ∈ 𝐿 ∧ ( 𝑇 ‘ 𝑤 ) ∈ 𝐿 ) → ( ( 𝑇 ‘ 𝑢 ) = ( 𝑇 ‘ 𝑤 ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ) |
25 |
13 16 20 24
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑇 ‘ 𝑢 ) = ( 𝑇 ‘ 𝑤 ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ) |
26 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑁 ∈ Fin ) |
27 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
28 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑢 ∈ 𝐵 ) |
29 |
1 2 3 4 5 6 7 8 9
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑢 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑢 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑢 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
30 |
26 27 28 29
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑢 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑢 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
31 |
30
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑇 ‘ 𝑢 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑢 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
32 |
31
|
fveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) = ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑢 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
33 |
32
|
fveq1d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑢 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) |
34 |
|
simplll |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
35 |
28
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑢 ∈ 𝐵 ) |
36 |
35
|
anim1i |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑢 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) ) |
37 |
1 2 3 4 5 6 7 8
|
pm2mpf1lem |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑢 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) = ( 𝑢 decompPMat 𝑛 ) ) |
38 |
34 36 37
|
syl2anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑢 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) = ( 𝑢 decompPMat 𝑛 ) ) |
39 |
33 38
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( 𝑢 decompPMat 𝑛 ) ) |
40 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑤 ∈ 𝐵 ) |
41 |
1 2 3 4 5 6 7 8 9
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑤 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑤 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑤 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
42 |
26 27 40 41
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑇 ‘ 𝑤 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑤 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
43 |
42
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) = ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑤 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
44 |
43
|
fveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑤 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) |
45 |
44
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑤 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) |
46 |
40
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑤 ∈ 𝐵 ) |
47 |
46
|
anim1i |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑤 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) ) |
48 |
1 2 3 4 5 6 7 8
|
pm2mpf1lem |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑤 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) = ( 𝑤 decompPMat 𝑛 ) ) |
49 |
34 47 48
|
syl2anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑤 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝑛 ) = ( 𝑤 decompPMat 𝑛 ) ) |
50 |
45 49
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) = ( 𝑤 decompPMat 𝑛 ) ) |
51 |
39 50
|
eqeq12d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ↔ ( 𝑢 decompPMat 𝑛 ) = ( 𝑤 decompPMat 𝑛 ) ) ) |
52 |
2 3
|
decpmatval |
⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑢 decompPMat 𝑛 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) ) |
53 |
28 52
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑢 decompPMat 𝑛 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) ) |
54 |
2 3
|
decpmatval |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑤 decompPMat 𝑛 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ) |
55 |
40 54
|
sylan |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑤 decompPMat 𝑛 ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ) |
56 |
53 55
|
eqeq12d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑢 decompPMat 𝑛 ) = ( 𝑤 decompPMat 𝑛 ) ↔ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ) ) |
57 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
58 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
59 |
|
simplll |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑁 ∈ Fin ) |
60 |
|
simpllr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
61 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
62 |
|
simp2 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑖 ∈ 𝑁 ) |
63 |
|
simp3 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑗 ∈ 𝑁 ) |
64 |
3
|
eleq2i |
⊢ ( 𝑢 ∈ 𝐵 ↔ 𝑢 ∈ ( Base ‘ 𝐶 ) ) |
65 |
64
|
biimpi |
⊢ ( 𝑢 ∈ 𝐵 → 𝑢 ∈ ( Base ‘ 𝐶 ) ) |
66 |
65
|
adantr |
⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → 𝑢 ∈ ( Base ‘ 𝐶 ) ) |
67 |
66
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑢 ∈ ( Base ‘ 𝐶 ) ) |
68 |
67
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑢 ∈ ( Base ‘ 𝐶 ) ) |
69 |
68 3
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑢 ∈ 𝐵 ) |
70 |
2 61 3 62 63 69
|
matecld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑢 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) |
71 |
|
simp1r |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑛 ∈ ℕ0 ) |
72 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) |
73 |
72 61 1 57
|
coe1fvalcl |
⊢ ( ( ( 𝑖 𝑢 𝑗 ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
74 |
70 71 73
|
syl2anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
75 |
7 57 58 59 60 74
|
matbas2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) ∈ ( Base ‘ 𝐴 ) ) |
76 |
3
|
eleq2i |
⊢ ( 𝑤 ∈ 𝐵 ↔ 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
77 |
76
|
biimpi |
⊢ ( 𝑤 ∈ 𝐵 → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
78 |
77
|
ad2antll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
79 |
78
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
80 |
79
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
81 |
80 3
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → 𝑤 ∈ 𝐵 ) |
82 |
2 61 3 62 63 81
|
matecld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( 𝑖 𝑤 𝑗 ) ∈ ( Base ‘ 𝑃 ) ) |
83 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) = ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) |
84 |
83 61 1 57
|
coe1fvalcl |
⊢ ( ( ( 𝑖 𝑤 𝑗 ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
85 |
82 71 84
|
syl2anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
86 |
7 57 58 59 60 85
|
matbas2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ∈ ( Base ‘ 𝐴 ) ) |
87 |
7 58
|
eqmat |
⊢ ( ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) ∈ ( Base ‘ 𝐴 ) ∧ ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ↔ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) ) |
88 |
75 86 87
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ↔ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) ) |
89 |
56 88
|
bitrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑢 decompPMat 𝑛 ) = ( 𝑤 decompPMat 𝑛 ) ↔ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) ) |
90 |
89
|
adantlr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑢 decompPMat 𝑛 ) = ( 𝑤 decompPMat 𝑛 ) ↔ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) ) |
91 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) |
92 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) |
93 |
91 92
|
eqeq12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ↔ ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) ) |
94 |
|
oveq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) ) |
95 |
|
oveq2 |
⊢ ( 𝑦 = 𝑏 → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) ) |
96 |
94 95
|
eqeq12d |
⊢ ( 𝑦 = 𝑏 → ( ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ↔ ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) ) ) |
97 |
93 96
|
rspc2va |
⊢ ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) ) |
98 |
|
eqidd |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) ) |
99 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( 𝑖 𝑢 𝑗 ) = ( 𝑎 𝑢 𝑏 ) ) |
100 |
99
|
fveq2d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) = ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ) |
101 |
100
|
fveq1d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) ) |
102 |
101
|
adantl |
⊢ ( ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) ) → ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) ) |
103 |
|
simplll |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑎 ∈ 𝑁 ) |
104 |
|
simpllr |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑏 ∈ 𝑁 ) |
105 |
|
fvexd |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) ∈ V ) |
106 |
98 102 103 104 105
|
ovmpod |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) = ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) ) |
107 |
|
eqidd |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ) |
108 |
|
oveq12 |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( 𝑖 𝑤 𝑗 ) = ( 𝑎 𝑤 𝑏 ) ) |
109 |
108
|
fveq2d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) = ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ) |
110 |
109
|
fveq1d |
⊢ ( ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) → ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) |
111 |
110
|
adantl |
⊢ ( ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑖 = 𝑎 ∧ 𝑗 = 𝑏 ) ) → ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) |
112 |
|
fvexd |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ∈ V ) |
113 |
107 111 103 104 112
|
ovmpod |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) |
114 |
106 113
|
eqeq12d |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) ↔ ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
115 |
114
|
biimpd |
⊢ ( ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
116 |
115
|
exp31 |
⊢ ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑛 ∈ ℕ0 → ( ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) |
117 |
116
|
com14 |
⊢ ( ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) = ( 𝑎 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑛 ∈ ℕ0 → ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) |
118 |
97 117
|
syl |
⊢ ( ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑛 ∈ ℕ0 → ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) |
119 |
118
|
ex |
⊢ ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑛 ∈ ℕ0 → ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) ) |
120 |
119
|
com25 |
⊢ ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑛 ∈ ℕ0 → ( ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) ) |
121 |
120
|
pm2.43i |
⊢ ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑛 ∈ ℕ0 → ( ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) |
122 |
121
|
impcom |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑛 ∈ ℕ0 → ( ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) |
123 |
122
|
imp |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ 𝑁 ∀ 𝑦 ∈ 𝑁 ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) = ( 𝑥 ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
124 |
90 123
|
sylbid |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑢 decompPMat 𝑛 ) = ( 𝑤 decompPMat 𝑛 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
125 |
51 124
|
sylbid |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) → ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
126 |
125
|
ralimdva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) → ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
127 |
126
|
impancom |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) → ( ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
128 |
127
|
imp |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) |
129 |
27
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑅 ∈ Ring ) |
130 |
|
simprl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑎 ∈ 𝑁 ) |
131 |
|
simprr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑏 ∈ 𝑁 ) |
132 |
66
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) → 𝑢 ∈ ( Base ‘ 𝐶 ) ) |
133 |
132
|
adantr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑢 ∈ ( Base ‘ 𝐶 ) ) |
134 |
133 3
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑢 ∈ 𝐵 ) |
135 |
2 61 3 130 131 134
|
matecld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 𝑢 𝑏 ) ∈ ( Base ‘ 𝑃 ) ) |
136 |
78
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) |
137 |
136 3
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → 𝑤 ∈ 𝐵 ) |
138 |
2 61 3 130 131 137
|
matecld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 𝑤 𝑏 ) ∈ ( Base ‘ 𝑃 ) ) |
139 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) = ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) |
140 |
|
eqid |
⊢ ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) = ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) |
141 |
1 61 139 140
|
ply1coe1eq |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑎 𝑢 𝑏 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑎 𝑤 𝑏 ) ∈ ( Base ‘ 𝑃 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ↔ ( 𝑎 𝑢 𝑏 ) = ( 𝑎 𝑤 𝑏 ) ) ) |
142 |
141
|
bicomd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑎 𝑢 𝑏 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑎 𝑤 𝑏 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑎 𝑢 𝑏 ) = ( 𝑎 𝑤 𝑏 ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
143 |
129 135 138 142
|
syl3anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( ( 𝑎 𝑢 𝑏 ) = ( 𝑎 𝑤 𝑏 ) ↔ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) |
144 |
128 143
|
mpbird |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ∧ ( 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) ) → ( 𝑎 𝑢 𝑏 ) = ( 𝑎 𝑤 𝑏 ) ) |
145 |
144
|
ralrimivva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) → ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 𝑢 𝑏 ) = ( 𝑎 𝑤 𝑏 ) ) |
146 |
2 3
|
eqmat |
⊢ ( ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑢 = 𝑤 ↔ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 𝑢 𝑏 ) = ( 𝑎 𝑤 𝑏 ) ) ) |
147 |
146
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) → ( 𝑢 = 𝑤 ↔ ∀ 𝑎 ∈ 𝑁 ∀ 𝑏 ∈ 𝑁 ( 𝑎 𝑢 𝑏 ) = ( 𝑎 𝑤 𝑏 ) ) ) |
148 |
145 147
|
mpbird |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) → 𝑢 = 𝑤 ) |
149 |
148
|
ex |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) → 𝑢 = 𝑤 ) ) |
150 |
25 149
|
sylbid |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( ( 𝑇 ‘ 𝑢 ) = ( 𝑇 ‘ 𝑤 ) → 𝑢 = 𝑤 ) ) |
151 |
150
|
ralrimivva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑢 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( 𝑇 ‘ 𝑢 ) = ( 𝑇 ‘ 𝑤 ) → 𝑢 = 𝑤 ) ) |
152 |
|
dff13 |
⊢ ( 𝑇 : 𝐵 –1-1→ 𝐿 ↔ ( 𝑇 : 𝐵 ⟶ 𝐿 ∧ ∀ 𝑢 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( 𝑇 ‘ 𝑢 ) = ( 𝑇 ‘ 𝑤 ) → 𝑢 = 𝑤 ) ) ) |
153 |
11 151 152
|
sylanbrc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵 –1-1→ 𝐿 ) |