| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpval.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pm2mpval.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pm2mpval.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pm2mpval.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 5 |  | pm2mpval.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 6 |  | pm2mpval.x | ⊢ 𝑋  =  ( var1 ‘ 𝐴 ) | 
						
							| 7 |  | pm2mpval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 8 |  | pm2mpval.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 9 |  | pm2mpval.t | ⊢ 𝑇  =  ( 𝑁  pMatToMatPoly  𝑅 ) | 
						
							| 10 |  | pm2mpcl.l | ⊢ 𝐿  =  ( Base ‘ 𝑄 ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | pm2mpf | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇 : 𝐵 ⟶ 𝐿 ) | 
						
							| 12 | 7 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  𝐴  ∈  Ring ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 10 | pm2mpcl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑢  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑢 )  ∈  𝐿 ) | 
						
							| 15 | 14 | 3expa | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑢  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑢 )  ∈  𝐿 ) | 
						
							| 16 | 15 | adantrr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑇 ‘ 𝑢 )  ∈  𝐿 ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 9 10 | pm2mpcl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑤  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑤 )  ∈  𝐿 ) | 
						
							| 18 | 17 | 3expia | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 𝑤  ∈  𝐵  →  ( 𝑇 ‘ 𝑤 )  ∈  𝐿 ) ) | 
						
							| 19 | 18 | adantld | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑤 )  ∈  𝐿 ) ) | 
						
							| 20 | 19 | imp | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑇 ‘ 𝑤 )  ∈  𝐿 ) | 
						
							| 21 |  | eqid | ⊢ ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) )  =  ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) | 
						
							| 22 |  | eqid | ⊢ ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) )  =  ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) | 
						
							| 23 | 8 10 21 22 | ply1coe1eq | ⊢ ( ( 𝐴  ∈  Ring  ∧  ( 𝑇 ‘ 𝑢 )  ∈  𝐿  ∧  ( 𝑇 ‘ 𝑤 )  ∈  𝐿 )  →  ( ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 )  ↔  ( 𝑇 ‘ 𝑢 )  =  ( 𝑇 ‘ 𝑤 ) ) ) | 
						
							| 24 | 23 | bicomd | ⊢ ( ( 𝐴  ∈  Ring  ∧  ( 𝑇 ‘ 𝑢 )  ∈  𝐿  ∧  ( 𝑇 ‘ 𝑤 )  ∈  𝐿 )  →  ( ( 𝑇 ‘ 𝑢 )  =  ( 𝑇 ‘ 𝑤 )  ↔  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ) | 
						
							| 25 | 13 16 20 24 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑇 ‘ 𝑢 )  =  ( 𝑇 ‘ 𝑤 )  ↔  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) ) ) | 
						
							| 26 |  | simpll | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  𝑁  ∈  Fin ) | 
						
							| 27 |  | simplr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  𝑅  ∈  Ring ) | 
						
							| 28 |  | simprl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  𝑢  ∈  𝐵 ) | 
						
							| 29 | 1 2 3 4 5 6 7 8 9 | pm2mpfval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑢  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑢 )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑢  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 30 | 26 27 28 29 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑇 ‘ 𝑢 )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑢  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 31 | 30 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑇 ‘ 𝑢 )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑢  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) )  =  ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑢  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 33 | 32 | fveq1d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑢  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 34 |  | simplll | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) ) | 
						
							| 35 | 28 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑢  ∈  𝐵 ) | 
						
							| 36 | 35 | anim1i | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑢  ∈  𝐵  ∧  𝑛  ∈  ℕ0 ) ) | 
						
							| 37 | 1 2 3 4 5 6 7 8 | pm2mpf1lem | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑛  ∈  ℕ0 ) )  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑢  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ‘ 𝑛 )  =  ( 𝑢  decompPMat  𝑛 ) ) | 
						
							| 38 | 34 36 37 | syl2anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑢  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ‘ 𝑛 )  =  ( 𝑢  decompPMat  𝑛 ) ) | 
						
							| 39 | 33 38 | eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( 𝑢  decompPMat  𝑛 ) ) | 
						
							| 40 |  | simprr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  𝑤  ∈  𝐵 ) | 
						
							| 41 | 1 2 3 4 5 6 7 8 9 | pm2mpfval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑤  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑤 )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑤  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 42 | 26 27 40 41 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑇 ‘ 𝑤 )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑤  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 43 | 42 | fveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) )  =  ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑤  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 44 | 43 | fveq1d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑤  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 45 | 44 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑤  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 46 | 40 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑤  ∈  𝐵 ) | 
						
							| 47 | 46 | anim1i | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑤  ∈  𝐵  ∧  𝑛  ∈  ℕ0 ) ) | 
						
							| 48 | 1 2 3 4 5 6 7 8 | pm2mpf1lem | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑤  ∈  𝐵  ∧  𝑛  ∈  ℕ0 ) )  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑤  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ‘ 𝑛 )  =  ( 𝑤  decompPMat  𝑛 ) ) | 
						
							| 49 | 34 47 48 | syl2anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑤  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ‘ 𝑛 )  =  ( 𝑤  decompPMat  𝑛 ) ) | 
						
							| 50 | 45 49 | eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 )  =  ( 𝑤  decompPMat  𝑛 ) ) | 
						
							| 51 | 39 50 | eqeq12d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 )  ↔  ( 𝑢  decompPMat  𝑛 )  =  ( 𝑤  decompPMat  𝑛 ) ) ) | 
						
							| 52 | 2 3 | decpmatval | ⊢ ( ( 𝑢  ∈  𝐵  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑢  decompPMat  𝑛 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) ) | 
						
							| 53 | 28 52 | sylan | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑢  decompPMat  𝑛 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) ) | 
						
							| 54 | 2 3 | decpmatval | ⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑤  decompPMat  𝑛 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ) | 
						
							| 55 | 40 54 | sylan | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑤  decompPMat  𝑛 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ) | 
						
							| 56 | 53 55 | eqeq12d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑢  decompPMat  𝑛 )  =  ( 𝑤  decompPMat  𝑛 )  ↔  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ) ) | 
						
							| 57 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 58 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 59 |  | simplll | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑁  ∈  Fin ) | 
						
							| 60 |  | simpllr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 61 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 62 |  | simp2 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑖  ∈  𝑁 ) | 
						
							| 63 |  | simp3 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑗  ∈  𝑁 ) | 
						
							| 64 | 3 | eleq2i | ⊢ ( 𝑢  ∈  𝐵  ↔  𝑢  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 65 | 64 | biimpi | ⊢ ( 𝑢  ∈  𝐵  →  𝑢  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  →  𝑢  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 67 | 66 | ad2antlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑢  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 68 | 67 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑢  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 69 | 68 3 | eleqtrrdi | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑢  ∈  𝐵 ) | 
						
							| 70 | 2 61 3 62 63 69 | matecld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑢 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 71 |  | simp1r | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 72 |  | eqid | ⊢ ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) | 
						
							| 73 | 72 61 1 57 | coe1fvalcl | ⊢ ( ( ( 𝑖 𝑢 𝑗 )  ∈  ( Base ‘ 𝑃 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 74 | 70 71 73 | syl2anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 75 | 7 57 58 59 60 74 | matbas2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 76 | 3 | eleq2i | ⊢ ( 𝑤  ∈  𝐵  ↔  𝑤  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 77 | 76 | biimpi | ⊢ ( 𝑤  ∈  𝐵  →  𝑤  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 78 | 77 | ad2antll | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  𝑤  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 79 | 78 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑤  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 80 | 79 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑤  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 81 | 80 3 | eleqtrrdi | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑤  ∈  𝐵 ) | 
						
							| 82 | 2 61 3 62 63 81 | matecld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑤 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 83 |  | eqid | ⊢ ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) | 
						
							| 84 | 83 61 1 57 | coe1fvalcl | ⊢ ( ( ( 𝑖 𝑤 𝑗 )  ∈  ( Base ‘ 𝑃 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 85 | 82 71 84 | syl2anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 86 | 7 57 58 59 60 85 | matbas2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 87 | 7 58 | eqmat | ⊢ ( ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) )  ∈  ( Base ‘ 𝐴 )  ∧  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) )  ∈  ( Base ‘ 𝐴 ) )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) )  ↔  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) ) | 
						
							| 88 | 75 86 87 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) )  ↔  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) ) | 
						
							| 89 | 56 88 | bitrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑢  decompPMat  𝑛 )  =  ( 𝑤  decompPMat  𝑛 )  ↔  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) ) | 
						
							| 90 | 89 | adantlr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑢  decompPMat  𝑛 )  =  ( 𝑤  decompPMat  𝑛 )  ↔  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) ) | 
						
							| 91 |  | oveq1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) | 
						
							| 92 |  | oveq1 | ⊢ ( 𝑥  =  𝑎  →  ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) | 
						
							| 93 | 91 92 | eqeq12d | ⊢ ( 𝑥  =  𝑎  →  ( ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  ↔  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) ) ) | 
						
							| 94 |  | oveq2 | ⊢ ( 𝑦  =  𝑏  →  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) ) | 
						
							| 95 |  | oveq2 | ⊢ ( 𝑦  =  𝑏  →  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) ) | 
						
							| 96 | 94 95 | eqeq12d | ⊢ ( 𝑦  =  𝑏  →  ( ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  ↔  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) ) ) | 
						
							| 97 | 93 96 | rspc2va | ⊢ ( ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  ∧  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) )  →  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 ) ) | 
						
							| 98 |  | eqidd | ⊢ ( ( ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) ) | 
						
							| 99 |  | oveq12 | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( 𝑖 𝑢 𝑗 )  =  ( 𝑎 𝑢 𝑏 ) ) | 
						
							| 100 | 99 | fveq2d | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) )  =  ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ) | 
						
							| 101 | 100 | fveq1d | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) ) | 
						
							| 102 | 101 | adantl | ⊢ ( ( ( ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 ) )  →  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) ) | 
						
							| 103 |  | simplll | ⊢ ( ( ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑎  ∈  𝑁 ) | 
						
							| 104 |  | simpllr | ⊢ ( ( ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  𝑏  ∈  𝑁 ) | 
						
							| 105 |  | fvexd | ⊢ ( ( ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  ∈  V ) | 
						
							| 106 | 98 102 103 104 105 | ovmpod | ⊢ ( ( ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 )  =  ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 ) ) | 
						
							| 107 |  | eqidd | ⊢ ( ( ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) ) | 
						
							| 108 |  | oveq12 | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( 𝑖 𝑤 𝑗 )  =  ( 𝑎 𝑤 𝑏 ) ) | 
						
							| 109 | 108 | fveq2d | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) )  =  ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ) | 
						
							| 110 | 109 | fveq1d | ⊢ ( ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 )  →  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) | 
						
							| 111 | 110 | adantl | ⊢ ( ( ( ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ( 𝑖  =  𝑎  ∧  𝑗  =  𝑏 ) )  →  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) | 
						
							| 112 |  | fvexd | ⊢ ( ( ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 )  ∈  V ) | 
						
							| 113 | 107 111 103 104 112 | ovmpod | ⊢ ( ( ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) | 
						
							| 114 | 106 113 | eqeq12d | ⊢ ( ( ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 )  ↔  ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) | 
						
							| 115 | 114 | biimpd | ⊢ ( ( ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 )  →  ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) | 
						
							| 116 | 115 | exp31 | ⊢ ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑛  ∈  ℕ0  →  ( ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 )  →  ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 117 | 116 | com14 | ⊢ ( ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 )  =  ( 𝑎 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑏 )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑛  ∈  ℕ0  →  ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 118 | 97 117 | syl | ⊢ ( ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  ∧  ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 ) )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑛  ∈  ℕ0  →  ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 119 | 118 | ex | ⊢ ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑛  ∈  ℕ0  →  ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 120 | 119 | com25 | ⊢ ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑛  ∈  ℕ0  →  ( ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  →  ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 121 | 120 | pm2.43i | ⊢ ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑛  ∈  ℕ0  →  ( ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  →  ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 122 | 121 | impcom | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑛  ∈  ℕ0  →  ( ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  →  ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) ) | 
						
							| 123 | 122 | imp | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ∀ 𝑥  ∈  𝑁 ∀ 𝑦  ∈  𝑁 ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑢 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  =  ( 𝑥 ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑤 𝑗 ) ) ‘ 𝑛 ) ) 𝑦 )  →  ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) | 
						
							| 124 | 90 123 | sylbid | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑢  decompPMat  𝑛 )  =  ( 𝑤  decompPMat  𝑛 )  →  ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) | 
						
							| 125 | 51 124 | sylbid | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 )  →  ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) | 
						
							| 126 | 125 | ralimdva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) | 
						
							| 127 | 126 | impancom | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) )  →  ( ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 )  →  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) | 
						
							| 128 | 127 | imp | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) | 
						
							| 129 | 27 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑅  ∈  Ring ) | 
						
							| 130 |  | simprl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑎  ∈  𝑁 ) | 
						
							| 131 |  | simprr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑏  ∈  𝑁 ) | 
						
							| 132 | 66 | ad2antlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) )  →  𝑢  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 133 | 132 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑢  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 134 | 133 3 | eleqtrrdi | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑢  ∈  𝐵 ) | 
						
							| 135 | 2 61 3 130 131 134 | matecld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 𝑢 𝑏 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 136 | 78 | ad2antrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑤  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 137 | 136 3 | eleqtrrdi | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  𝑤  ∈  𝐵 ) | 
						
							| 138 | 2 61 3 130 131 137 | matecld | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 𝑤 𝑏 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 139 |  | eqid | ⊢ ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) )  =  ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) | 
						
							| 140 |  | eqid | ⊢ ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) )  =  ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) | 
						
							| 141 | 1 61 139 140 | ply1coe1eq | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑎 𝑢 𝑏 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑎 𝑤 𝑏 )  ∈  ( Base ‘ 𝑃 ) )  →  ( ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 )  ↔  ( 𝑎 𝑢 𝑏 )  =  ( 𝑎 𝑤 𝑏 ) ) ) | 
						
							| 142 | 141 | bicomd | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑎 𝑢 𝑏 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑎 𝑤 𝑏 )  ∈  ( Base ‘ 𝑃 ) )  →  ( ( 𝑎 𝑢 𝑏 )  =  ( 𝑎 𝑤 𝑏 )  ↔  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) | 
						
							| 143 | 129 135 138 142 | syl3anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( ( 𝑎 𝑢 𝑏 )  =  ( 𝑎 𝑤 𝑏 )  ↔  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑎 𝑢 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑎 𝑤 𝑏 ) ) ‘ 𝑛 ) ) ) | 
						
							| 144 | 128 143 | mpbird | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) )  ∧  ( 𝑎  ∈  𝑁  ∧  𝑏  ∈  𝑁 ) )  →  ( 𝑎 𝑢 𝑏 )  =  ( 𝑎 𝑤 𝑏 ) ) | 
						
							| 145 | 144 | ralrimivva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) )  →  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 𝑢 𝑏 )  =  ( 𝑎 𝑤 𝑏 ) ) | 
						
							| 146 | 2 3 | eqmat | ⊢ ( ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  →  ( 𝑢  =  𝑤  ↔  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 𝑢 𝑏 )  =  ( 𝑎 𝑤 𝑏 ) ) ) | 
						
							| 147 | 146 | ad2antlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) )  →  ( 𝑢  =  𝑤  ↔  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( 𝑎 𝑢 𝑏 )  =  ( 𝑎 𝑤 𝑏 ) ) ) | 
						
							| 148 | 145 147 | mpbird | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  ∧  ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 ) )  →  𝑢  =  𝑤 ) | 
						
							| 149 | 148 | ex | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ∀ 𝑛  ∈  ℕ0 ( ( coe1 ‘ ( 𝑇 ‘ 𝑢 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑇 ‘ 𝑤 ) ) ‘ 𝑛 )  →  𝑢  =  𝑤 ) ) | 
						
							| 150 | 25 149 | sylbid | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑇 ‘ 𝑢 )  =  ( 𝑇 ‘ 𝑤 )  →  𝑢  =  𝑤 ) ) | 
						
							| 151 | 150 | ralrimivva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ∀ 𝑢  ∈  𝐵 ∀ 𝑤  ∈  𝐵 ( ( 𝑇 ‘ 𝑢 )  =  ( 𝑇 ‘ 𝑤 )  →  𝑢  =  𝑤 ) ) | 
						
							| 152 |  | dff13 | ⊢ ( 𝑇 : 𝐵 –1-1→ 𝐿  ↔  ( 𝑇 : 𝐵 ⟶ 𝐿  ∧  ∀ 𝑢  ∈  𝐵 ∀ 𝑤  ∈  𝐵 ( ( 𝑇 ‘ 𝑢 )  =  ( 𝑇 ‘ 𝑤 )  →  𝑢  =  𝑤 ) ) ) | 
						
							| 153 | 11 151 152 | sylanbrc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇 : 𝐵 –1-1→ 𝐿 ) |