| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpf1lem.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pm2mpf1lem.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pm2mpf1lem.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pm2mpf1lem.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 5 |  | pm2mpf1lem.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 6 |  | pm2mpf1lem.x | ⊢ 𝑋  =  ( var1 ‘ 𝐴 ) | 
						
							| 7 |  | pm2mpf1lem.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 8 |  | pm2mpf1lem.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 10 | 7 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑈  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  𝐴  ∈  Ring ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 13 |  | eqid | ⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 ) | 
						
							| 14 |  | simpllr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑈  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 15 |  | simplrl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑈  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑈  ∈  𝐵 ) | 
						
							| 16 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑈  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 17 | 1 2 3 7 12 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑈  ∈  𝐵  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑈  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 18 | 14 15 16 17 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑈  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑈  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 19 | 18 | ralrimiva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑈  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  ∀ 𝑘  ∈  ℕ0 ( 𝑈  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 20 | 1 2 3 7 13 | decpmatfsupp | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑈  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑈  decompPMat  𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 21 | 20 | ad2ant2lr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑈  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑈  decompPMat  𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 22 |  | simprr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑈  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 23 | 8 9 6 5 11 12 4 13 19 21 22 | gsummoncoe1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑈  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑈  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ‘ 𝐾 )  =  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑈  decompPMat  𝑘 ) ) | 
						
							| 24 |  | csbov2g | ⊢ ( 𝐾  ∈  ℕ0  →  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑈  decompPMat  𝑘 )  =  ( 𝑈  decompPMat  ⦋ 𝐾  /  𝑘 ⦌ 𝑘 ) ) | 
						
							| 25 | 24 | ad2antll | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑈  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑈  decompPMat  𝑘 )  =  ( 𝑈  decompPMat  ⦋ 𝐾  /  𝑘 ⦌ 𝑘 ) ) | 
						
							| 26 |  | csbvarg | ⊢ ( 𝐾  ∈  ℕ0  →  ⦋ 𝐾  /  𝑘 ⦌ 𝑘  =  𝐾 ) | 
						
							| 27 | 26 | ad2antll | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑈  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  ⦋ 𝐾  /  𝑘 ⦌ 𝑘  =  𝐾 ) | 
						
							| 28 | 27 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑈  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  ( 𝑈  decompPMat  ⦋ 𝐾  /  𝑘 ⦌ 𝑘 )  =  ( 𝑈  decompPMat  𝐾 ) ) | 
						
							| 29 | 23 25 28 | 3eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑈  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑈  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ‘ 𝐾 )  =  ( 𝑈  decompPMat  𝐾 ) ) |