| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpval.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pm2mpval.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pm2mpval.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pm2mpval.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 5 |  | pm2mpval.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 6 |  | pm2mpval.x | ⊢ 𝑋  =  ( var1 ‘ 𝐴 ) | 
						
							| 7 |  | pm2mpval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 8 |  | pm2mpval.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 9 |  | pm2mpval.t | ⊢ 𝑇  =  ( 𝑁  pMatToMatPoly  𝑅 ) | 
						
							| 10 |  | df-pm2mp | ⊢  pMatToMatPoly   =  ( 𝑛  ∈  Fin ,  𝑟  ∈  V  ↦  ( 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) )  ↦  ⦋ ( 𝑛  Mat  𝑟 )  /  𝑎 ⦌ ⦋ ( Poly1 ‘ 𝑎 )  /  𝑞 ⦌ ( 𝑞  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) ) ) ) | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →   pMatToMatPoly   =  ( 𝑛  ∈  Fin ,  𝑟  ∈  V  ↦  ( 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) )  ↦  ⦋ ( 𝑛  Mat  𝑟 )  /  𝑎 ⦌ ⦋ ( Poly1 ‘ 𝑎 )  /  𝑞 ⦌ ( 𝑞  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) ) ) ) ) | 
						
							| 12 |  | simpl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  𝑛  =  𝑁 ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑟  =  𝑅  →  ( Poly1 ‘ 𝑟 )  =  ( Poly1 ‘ 𝑅 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( Poly1 ‘ 𝑟 )  =  ( Poly1 ‘ 𝑅 ) ) | 
						
							| 15 | 12 14 | oveq12d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) )  =  ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( Base ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) )  =  ( Base ‘ ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) ) ) ) | 
						
							| 17 | 1 | oveq2i | ⊢ ( 𝑁  Mat  𝑃 )  =  ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) ) | 
						
							| 18 | 2 17 | eqtri | ⊢ 𝐶  =  ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) ) | 
						
							| 19 | 18 | fveq2i | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 20 | 3 19 | eqtri | ⊢ 𝐵  =  ( Base ‘ ( 𝑁  Mat  ( Poly1 ‘ 𝑅 ) ) ) | 
						
							| 21 | 16 20 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( Base ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) )  =  𝐵 ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  ∧  ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 ) )  →  ( Base ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) )  =  𝐵 ) | 
						
							| 23 |  | ovex | ⊢ ( 𝑛  Mat  𝑟 )  ∈  V | 
						
							| 24 |  | fvexd | ⊢ ( 𝑎  =  ( 𝑛  Mat  𝑟 )  →  ( Poly1 ‘ 𝑎 )  ∈  V ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝑎  =  ( 𝑛  Mat  𝑟 )  ∧  𝑞  =  ( Poly1 ‘ 𝑎 ) )  →  𝑞  =  ( Poly1 ‘ 𝑎 ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝑛  Mat  𝑟 )  →  ( Poly1 ‘ 𝑎 )  =  ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝑎  =  ( 𝑛  Mat  𝑟 )  ∧  𝑞  =  ( Poly1 ‘ 𝑎 ) )  →  ( Poly1 ‘ 𝑎 )  =  ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) | 
						
							| 28 | 25 27 | eqtrd | ⊢ ( ( 𝑎  =  ( 𝑛  Mat  𝑟 )  ∧  𝑞  =  ( Poly1 ‘ 𝑎 ) )  →  𝑞  =  ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( ( 𝑎  =  ( 𝑛  Mat  𝑟 )  ∧  𝑞  =  ( Poly1 ‘ 𝑎 ) )  →  (  ·𝑠  ‘ 𝑞 )  =  (  ·𝑠  ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) | 
						
							| 30 |  | eqidd | ⊢ ( ( 𝑎  =  ( 𝑛  Mat  𝑟 )  ∧  𝑞  =  ( Poly1 ‘ 𝑎 ) )  →  ( 𝑚  decompPMat  𝑘 )  =  ( 𝑚  decompPMat  𝑘 ) ) | 
						
							| 31 | 28 | fveq2d | ⊢ ( ( 𝑎  =  ( 𝑛  Mat  𝑟 )  ∧  𝑞  =  ( Poly1 ‘ 𝑎 ) )  →  ( mulGrp ‘ 𝑞 )  =  ( mulGrp ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( ( 𝑎  =  ( 𝑛  Mat  𝑟 )  ∧  𝑞  =  ( Poly1 ‘ 𝑎 ) )  →  ( .g ‘ ( mulGrp ‘ 𝑞 ) )  =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ) | 
						
							| 33 |  | eqidd | ⊢ ( ( 𝑎  =  ( 𝑛  Mat  𝑟 )  ∧  𝑞  =  ( Poly1 ‘ 𝑎 ) )  →  𝑘  =  𝑘 ) | 
						
							| 34 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝑛  Mat  𝑟 )  →  ( var1 ‘ 𝑎 )  =  ( var1 ‘ ( 𝑛  Mat  𝑟 ) ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝑎  =  ( 𝑛  Mat  𝑟 )  ∧  𝑞  =  ( Poly1 ‘ 𝑎 ) )  →  ( var1 ‘ 𝑎 )  =  ( var1 ‘ ( 𝑛  Mat  𝑟 ) ) ) | 
						
							| 36 | 32 33 35 | oveq123d | ⊢ ( ( 𝑎  =  ( 𝑛  Mat  𝑟 )  ∧  𝑞  =  ( Poly1 ‘ 𝑎 ) )  →  ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) )  =  ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ( var1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) | 
						
							| 37 | 29 30 36 | oveq123d | ⊢ ( ( 𝑎  =  ( 𝑛  Mat  𝑟 )  ∧  𝑞  =  ( Poly1 ‘ 𝑎 ) )  →  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) )  =  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ( var1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ) | 
						
							| 38 | 37 | mpteq2dv | ⊢ ( ( 𝑎  =  ( 𝑛  Mat  𝑟 )  ∧  𝑞  =  ( Poly1 ‘ 𝑎 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ( var1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ) ) | 
						
							| 39 | 28 38 | oveq12d | ⊢ ( ( 𝑎  =  ( 𝑛  Mat  𝑟 )  ∧  𝑞  =  ( Poly1 ‘ 𝑎 ) )  →  ( 𝑞  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) )  =  ( ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) )  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ( var1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ) ) ) | 
						
							| 40 | 24 39 | csbied | ⊢ ( 𝑎  =  ( 𝑛  Mat  𝑟 )  →  ⦋ ( Poly1 ‘ 𝑎 )  /  𝑞 ⦌ ( 𝑞  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) )  =  ( ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) )  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ( var1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ) ) ) | 
						
							| 41 | 23 40 | csbie | ⊢ ⦋ ( 𝑛  Mat  𝑟 )  /  𝑎 ⦌ ⦋ ( Poly1 ‘ 𝑎 )  /  𝑞 ⦌ ( 𝑞  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) )  =  ( ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) )  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ( var1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ) ) | 
						
							| 42 |  | oveq12 | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑛  Mat  𝑟 )  =  ( 𝑁  Mat  𝑅 ) ) | 
						
							| 43 | 42 | fveq2d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) )  =  ( Poly1 ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 44 | 7 | fveq2i | ⊢ ( Poly1 ‘ 𝐴 )  =  ( Poly1 ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 45 | 8 44 | eqtri | ⊢ 𝑄  =  ( Poly1 ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 46 | 43 45 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) )  =  𝑄 ) | 
						
							| 47 | 43 | fveq2d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  (  ·𝑠  ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) )  =  (  ·𝑠  ‘ ( Poly1 ‘ ( 𝑁  Mat  𝑅 ) ) ) ) | 
						
							| 48 | 45 | fveq2i | ⊢ (  ·𝑠  ‘ 𝑄 )  =  (  ·𝑠  ‘ ( Poly1 ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 49 | 4 48 | eqtri | ⊢  ∗   =  (  ·𝑠  ‘ ( Poly1 ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 50 | 47 49 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  (  ·𝑠  ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) )  =   ∗  ) | 
						
							| 51 |  | eqidd | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑚  decompPMat  𝑘 )  =  ( 𝑚  decompPMat  𝑘 ) ) | 
						
							| 52 | 43 | fveq2d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( mulGrp ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) )  =  ( mulGrp ‘ ( Poly1 ‘ ( 𝑁  Mat  𝑅 ) ) ) ) | 
						
							| 53 | 52 | fveq2d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) )  =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝑁  Mat  𝑅 ) ) ) ) ) | 
						
							| 54 | 45 | fveq2i | ⊢ ( mulGrp ‘ 𝑄 )  =  ( mulGrp ‘ ( Poly1 ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 55 | 54 | fveq2i | ⊢ ( .g ‘ ( mulGrp ‘ 𝑄 ) )  =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝑁  Mat  𝑅 ) ) ) ) | 
						
							| 56 | 5 55 | eqtri | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝑁  Mat  𝑅 ) ) ) ) | 
						
							| 57 | 53 56 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) )  =   ↑  ) | 
						
							| 58 |  | eqidd | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  𝑘  =  𝑘 ) | 
						
							| 59 | 42 | fveq2d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( var1 ‘ ( 𝑛  Mat  𝑟 ) )  =  ( var1 ‘ ( 𝑁  Mat  𝑅 ) ) ) | 
						
							| 60 | 7 | fveq2i | ⊢ ( var1 ‘ 𝐴 )  =  ( var1 ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 61 | 6 60 | eqtri | ⊢ 𝑋  =  ( var1 ‘ ( 𝑁  Mat  𝑅 ) ) | 
						
							| 62 | 59 61 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( var1 ‘ ( 𝑛  Mat  𝑟 ) )  =  𝑋 ) | 
						
							| 63 | 57 58 62 | oveq123d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ( var1 ‘ ( 𝑛  Mat  𝑟 ) ) )  =  ( 𝑘  ↑  𝑋 ) ) | 
						
							| 64 | 50 51 63 | oveq123d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ( var1 ‘ ( 𝑛  Mat  𝑟 ) ) ) )  =  ( ( 𝑚  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) | 
						
							| 65 | 64 | mpteq2dv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ( var1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) | 
						
							| 66 | 46 65 | oveq12d | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) )  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ( var1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  ∧  ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 ) )  →  ( ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) )  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ( var1 ‘ ( 𝑛  Mat  𝑟 ) ) ) ) ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 68 | 41 67 | eqtrid | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  ∧  ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 ) )  →  ⦋ ( 𝑛  Mat  𝑟 )  /  𝑎 ⦌ ⦋ ( Poly1 ‘ 𝑎 )  /  𝑞 ⦌ ( 𝑞  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 69 | 22 68 | mpteq12dv | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  ∧  ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 ) )  →  ( 𝑚  ∈  ( Base ‘ ( 𝑛  Mat  ( Poly1 ‘ 𝑟 ) ) )  ↦  ⦋ ( 𝑛  Mat  𝑟 )  /  𝑎 ⦌ ⦋ ( Poly1 ‘ 𝑎 )  /  𝑞 ⦌ ( 𝑞  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 ) (  ·𝑠  ‘ 𝑞 ) ( 𝑘 ( .g ‘ ( mulGrp ‘ 𝑞 ) ) ( var1 ‘ 𝑎 ) ) ) ) ) )  =  ( 𝑚  ∈  𝐵  ↦  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 70 |  | simpl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  𝑁  ∈  Fin ) | 
						
							| 71 |  | elex | ⊢ ( 𝑅  ∈  𝑉  →  𝑅  ∈  V ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  𝑅  ∈  V ) | 
						
							| 73 | 3 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 74 | 73 | mptex | ⊢ ( 𝑚  ∈  𝐵  ↦  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) )  ∈  V | 
						
							| 75 | 74 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  ( 𝑚  ∈  𝐵  ↦  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) )  ∈  V ) | 
						
							| 76 | 11 69 70 72 75 | ovmpod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  ( 𝑁  pMatToMatPoly  𝑅 )  =  ( 𝑚  ∈  𝐵  ↦  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 77 | 9 76 | eqtrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  𝑇  =  ( 𝑚  ∈  𝐵  ↦  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑚  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ) |