| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpf1lem.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pm2mpf1lem.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pm2mpf1lem.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | pm2mpf1lem.m |  |-  .* = ( .s ` Q ) | 
						
							| 5 |  | pm2mpf1lem.e |  |-  .^ = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 6 |  | pm2mpf1lem.x |  |-  X = ( var1 ` A ) | 
						
							| 7 |  | pm2mpf1lem.a |  |-  A = ( N Mat R ) | 
						
							| 8 |  | pm2mpf1lem.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 9 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 10 | 7 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> A e. Ring ) | 
						
							| 12 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 13 |  | eqid |  |-  ( 0g ` A ) = ( 0g ` A ) | 
						
							| 14 |  | simpllr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> R e. Ring ) | 
						
							| 15 |  | simplrl |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> U e. B ) | 
						
							| 16 |  | simpr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 17 | 1 2 3 7 12 | decpmatcl |  |-  ( ( R e. Ring /\ U e. B /\ k e. NN0 ) -> ( U decompPMat k ) e. ( Base ` A ) ) | 
						
							| 18 | 14 15 16 17 | syl3anc |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> ( U decompPMat k ) e. ( Base ` A ) ) | 
						
							| 19 | 18 | ralrimiva |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> A. k e. NN0 ( U decompPMat k ) e. ( Base ` A ) ) | 
						
							| 20 | 1 2 3 7 13 | decpmatfsupp |  |-  ( ( R e. Ring /\ U e. B ) -> ( k e. NN0 |-> ( U decompPMat k ) ) finSupp ( 0g ` A ) ) | 
						
							| 21 | 20 | ad2ant2lr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> ( k e. NN0 |-> ( U decompPMat k ) ) finSupp ( 0g ` A ) ) | 
						
							| 22 |  | simprr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> K e. NN0 ) | 
						
							| 23 | 8 9 6 5 11 12 4 13 19 21 22 | gsummoncoe1 |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( U decompPMat k ) .* ( k .^ X ) ) ) ) ) ` K ) = [_ K / k ]_ ( U decompPMat k ) ) | 
						
							| 24 |  | csbov2g |  |-  ( K e. NN0 -> [_ K / k ]_ ( U decompPMat k ) = ( U decompPMat [_ K / k ]_ k ) ) | 
						
							| 25 | 24 | ad2antll |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> [_ K / k ]_ ( U decompPMat k ) = ( U decompPMat [_ K / k ]_ k ) ) | 
						
							| 26 |  | csbvarg |  |-  ( K e. NN0 -> [_ K / k ]_ k = K ) | 
						
							| 27 | 26 | ad2antll |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> [_ K / k ]_ k = K ) | 
						
							| 28 | 27 | oveq2d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> ( U decompPMat [_ K / k ]_ k ) = ( U decompPMat K ) ) | 
						
							| 29 | 23 25 28 | 3eqtrd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( U e. B /\ K e. NN0 ) ) -> ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( U decompPMat k ) .* ( k .^ X ) ) ) ) ) ` K ) = ( U decompPMat K ) ) |