| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpval.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pm2mpval.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pm2mpval.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pm2mpval.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 5 |  | pm2mpval.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 6 |  | pm2mpval.x | ⊢ 𝑋  =  ( var1 ‘ 𝐴 ) | 
						
							| 7 |  | pm2mpval.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 8 |  | pm2mpval.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 9 |  | pm2mpval.t | ⊢ 𝑇  =  ( 𝑁  pMatToMatPoly  𝑅 ) | 
						
							| 10 |  | pm2mpcl.l | ⊢ 𝐿  =  ( Base ‘ 𝑄 ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 | pm2mpfval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( 0g ‘ 𝑄 )  =  ( 0g ‘ 𝑄 ) | 
						
							| 13 | 7 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 14 | 8 | ply1ring | ⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  Ring ) | 
						
							| 15 |  | ringcmn | ⊢ ( 𝑄  ∈  Ring  →  𝑄  ∈  CMnd ) | 
						
							| 16 | 13 14 15 | 3syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  CMnd ) | 
						
							| 17 | 16 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑄  ∈  CMnd ) | 
						
							| 18 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 19 | 18 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ℕ0  ∈  V ) | 
						
							| 20 | 13 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝐴  ∈  Ring ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝐴  ∈  Ring ) | 
						
							| 22 |  | simpl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 23 |  | simpl3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑀  ∈  𝐵 ) | 
						
							| 24 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 25 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 26 | 1 2 3 7 25 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 27 | 22 23 24 26 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 28 |  | eqid | ⊢ ( mulGrp ‘ 𝑄 )  =  ( mulGrp ‘ 𝑄 ) | 
						
							| 29 | 25 8 6 4 28 5 10 | ply1tmcl | ⊢ ( ( 𝐴  ∈  Ring  ∧  ( 𝑀  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) )  ∈  𝐿 ) | 
						
							| 30 | 21 27 24 29 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) )  ∈  𝐿 ) | 
						
							| 31 | 30 | fmpttd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) : ℕ0 ⟶ 𝐿 ) | 
						
							| 32 | 8 | ply1lmod | ⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  LMod ) | 
						
							| 33 | 20 32 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑄  ∈  LMod ) | 
						
							| 34 |  | eqidd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( Scalar ‘ 𝑄 )  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 35 | 8 6 28 5 10 | ply1moncl | ⊢ ( ( 𝐴  ∈  Ring  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ↑  𝑋 )  ∈  𝐿 ) | 
						
							| 36 | 20 35 | sylan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ↑  𝑋 )  ∈  𝐿 ) | 
						
							| 37 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑄 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑄 ) ) | 
						
							| 38 |  | eqid | ⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 ) | 
						
							| 39 | 1 2 3 7 38 | decpmatfsupp | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑀  decompPMat  𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 40 | 39 | 3adant1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑀  decompPMat  𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 41 | 8 | ply1sca | ⊢ ( 𝐴  ∈  Ring  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 42 | 41 | eqcomd | ⊢ ( 𝐴  ∈  Ring  →  ( Scalar ‘ 𝑄 )  =  𝐴 ) | 
						
							| 43 | 20 42 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( Scalar ‘ 𝑄 )  =  𝐴 ) | 
						
							| 44 | 43 | fveq2d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 0g ‘ ( Scalar ‘ 𝑄 ) )  =  ( 0g ‘ 𝐴 ) ) | 
						
							| 45 | 40 44 | breqtrrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑀  decompPMat  𝑘 ) )  finSupp  ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ) | 
						
							| 46 | 19 33 34 10 27 36 12 37 4 45 | mptscmfsupp0 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑄 ) ) | 
						
							| 47 | 10 12 17 19 31 46 | gsumcl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) )  ∈  𝐿 ) | 
						
							| 48 | 11 47 | eqeltrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  𝐿 ) |