| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mat2pmatscmxcl.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | mat2pmatscmxcl.k | ⊢ 𝐾  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | mat2pmatscmxcl.t | ⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 ) | 
						
							| 4 |  | mat2pmatscmxcl.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 5 |  | mat2pmatscmxcl.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 6 |  | mat2pmatscmxcl.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 7 |  | mat2pmatscmxcl.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 8 |  | mat2pmatscmxcl.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 9 |  | mat2pmatscmxcl.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 10 |  | simpll | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  𝑁  ∈  Fin ) | 
						
							| 11 | 4 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 12 | 11 | ad2antlr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  𝑃  ∈  Ring ) | 
						
							| 13 |  | eqid | ⊢ ( mulGrp ‘ 𝑃 )  =  ( mulGrp ‘ 𝑃 ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 15 | 4 9 13 8 14 | ply1moncl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝐿  ∈  ℕ0 )  →  ( 𝐿  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 16 | 15 | ad2ant2l | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝐿  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 17 |  | simpl | ⊢ ( ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 )  →  𝑀  ∈  𝐾 ) | 
						
							| 18 | 17 | anim2i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑀  ∈  𝐾 ) ) | 
						
							| 19 |  | df-3an | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐾 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑀  ∈  𝐾 ) ) | 
						
							| 20 | 18 19 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐾 ) ) | 
						
							| 21 | 3 1 2 4 5 6 | mat2pmatbas0 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐾 )  →  ( 𝑇 ‘ 𝑀 )  ∈  𝐵 ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ( 𝑇 ‘ 𝑀 )  ∈  𝐵 ) | 
						
							| 23 | 14 5 6 7 | matvscl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  ∧  ( ( 𝐿  ↑  𝑋 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑇 ‘ 𝑀 )  ∈  𝐵 ) )  →  ( ( 𝐿  ↑  𝑋 )  ∗  ( 𝑇 ‘ 𝑀 ) )  ∈  𝐵 ) | 
						
							| 24 | 10 12 16 22 23 | syl22anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐾  ∧  𝐿  ∈  ℕ0 ) )  →  ( ( 𝐿  ↑  𝑋 )  ∗  ( 𝑇 ‘ 𝑀 ) )  ∈  𝐵 ) |