| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat2pmatscmxcl.a |
|- A = ( N Mat R ) |
| 2 |
|
mat2pmatscmxcl.k |
|- K = ( Base ` A ) |
| 3 |
|
mat2pmatscmxcl.t |
|- T = ( N matToPolyMat R ) |
| 4 |
|
mat2pmatscmxcl.p |
|- P = ( Poly1 ` R ) |
| 5 |
|
mat2pmatscmxcl.c |
|- C = ( N Mat P ) |
| 6 |
|
mat2pmatscmxcl.b |
|- B = ( Base ` C ) |
| 7 |
|
mat2pmatscmxcl.m |
|- .* = ( .s ` C ) |
| 8 |
|
mat2pmatscmxcl.e |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
| 9 |
|
mat2pmatscmxcl.x |
|- X = ( var1 ` R ) |
| 10 |
|
simpll |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. K /\ L e. NN0 ) ) -> N e. Fin ) |
| 11 |
4
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 12 |
11
|
ad2antlr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. K /\ L e. NN0 ) ) -> P e. Ring ) |
| 13 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
| 14 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 15 |
4 9 13 8 14
|
ply1moncl |
|- ( ( R e. Ring /\ L e. NN0 ) -> ( L .^ X ) e. ( Base ` P ) ) |
| 16 |
15
|
ad2ant2l |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. K /\ L e. NN0 ) ) -> ( L .^ X ) e. ( Base ` P ) ) |
| 17 |
|
simpl |
|- ( ( M e. K /\ L e. NN0 ) -> M e. K ) |
| 18 |
17
|
anim2i |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. K /\ L e. NN0 ) ) -> ( ( N e. Fin /\ R e. Ring ) /\ M e. K ) ) |
| 19 |
|
df-3an |
|- ( ( N e. Fin /\ R e. Ring /\ M e. K ) <-> ( ( N e. Fin /\ R e. Ring ) /\ M e. K ) ) |
| 20 |
18 19
|
sylibr |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. K /\ L e. NN0 ) ) -> ( N e. Fin /\ R e. Ring /\ M e. K ) ) |
| 21 |
3 1 2 4 5 6
|
mat2pmatbas0 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. K ) -> ( T ` M ) e. B ) |
| 22 |
20 21
|
syl |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. K /\ L e. NN0 ) ) -> ( T ` M ) e. B ) |
| 23 |
14 5 6 7
|
matvscl |
|- ( ( ( N e. Fin /\ P e. Ring ) /\ ( ( L .^ X ) e. ( Base ` P ) /\ ( T ` M ) e. B ) ) -> ( ( L .^ X ) .* ( T ` M ) ) e. B ) |
| 24 |
10 12 16 22 23
|
syl22anc |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. K /\ L e. NN0 ) ) -> ( ( L .^ X ) .* ( T ` M ) ) e. B ) |