| Step | Hyp | Ref | Expression | 
						
							| 1 |  | monmat2matmon.p |  | 
						
							| 2 |  | monmat2matmon.c |  | 
						
							| 3 |  | monmat2matmon.b |  | 
						
							| 4 |  | monmat2matmon.m1 |  | 
						
							| 5 |  | monmat2matmon.e1 |  | 
						
							| 6 |  | monmat2matmon.x |  | 
						
							| 7 |  | monmat2matmon.a |  | 
						
							| 8 |  | monmat2matmon.k |  | 
						
							| 9 |  | monmat2matmon.q |  | 
						
							| 10 |  | monmat2matmon.i |  | 
						
							| 11 |  | monmat2matmon.e2 |  | 
						
							| 12 |  | monmat2matmon.y |  | 
						
							| 13 |  | monmat2matmon.m2 |  | 
						
							| 14 |  | monmat2matmon.t |  | 
						
							| 15 |  | crngring |  | 
						
							| 16 |  | simpll |  | 
						
							| 17 |  | simplr |  | 
						
							| 18 | 7 8 14 1 2 3 13 11 12 | mat2pmatscmxcl |  | 
						
							| 19 | 1 2 3 4 5 6 7 9 10 | pm2mpfval |  | 
						
							| 20 | 16 17 18 19 | syl3anc |  | 
						
							| 21 | 15 20 | sylanl2 |  | 
						
							| 22 |  | simpll |  | 
						
							| 23 |  | simpr |  | 
						
							| 24 | 23 | anim1i |  | 
						
							| 25 |  | df-3an |  | 
						
							| 26 | 24 25 | sylibr |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 | 1 2 7 8 27 11 12 13 14 | monmatcollpw |  | 
						
							| 29 | 22 26 28 | syl2anc |  | 
						
							| 30 | 29 | oveq1d |  | 
						
							| 31 | 15 | a1i |  | 
						
							| 32 | 31 | anim2d |  | 
						
							| 33 | 32 | anim1d |  | 
						
							| 34 | 33 | imdistanri |  | 
						
							| 35 |  | ovif |  | 
						
							| 36 | 7 | matring |  | 
						
							| 37 | 9 | ply1sca |  | 
						
							| 38 | 36 37 | syl |  | 
						
							| 39 | 38 | ad2antrr |  | 
						
							| 40 | 39 | fveq2d |  | 
						
							| 41 | 40 | oveq1d |  | 
						
							| 42 | 9 | ply1lmod |  | 
						
							| 43 | 36 42 | syl |  | 
						
							| 44 | 43 | ad2antrr |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 | 45 46 | mgpbas |  | 
						
							| 48 | 9 | ply1ring |  | 
						
							| 49 | 36 48 | syl |  | 
						
							| 50 | 45 | ringmgp |  | 
						
							| 51 | 49 50 | syl |  | 
						
							| 52 | 51 | ad2antrr |  | 
						
							| 53 |  | simpr |  | 
						
							| 54 | 6 9 46 | vr1cl |  | 
						
							| 55 | 36 54 | syl |  | 
						
							| 56 | 55 | ad2antrr |  | 
						
							| 57 | 47 5 52 53 56 | mulgnn0cld |  | 
						
							| 58 |  | eqid |  | 
						
							| 59 |  | eqid |  | 
						
							| 60 |  | eqid |  | 
						
							| 61 | 46 58 4 59 60 | lmod0vs |  | 
						
							| 62 | 44 57 61 | syl2anc |  | 
						
							| 63 | 41 62 | eqtrd |  | 
						
							| 64 | 63 | ifeq2d |  | 
						
							| 65 | 35 64 | eqtrid |  | 
						
							| 66 | 34 65 | syl |  | 
						
							| 67 | 30 66 | eqtrd |  | 
						
							| 68 | 67 | mpteq2dva |  | 
						
							| 69 | 68 | oveq2d |  | 
						
							| 70 |  | ringmnd |  | 
						
							| 71 | 49 70 | syl |  | 
						
							| 72 | 71 | adantr |  | 
						
							| 73 |  | nn0ex |  | 
						
							| 74 | 73 | a1i |  | 
						
							| 75 |  | simprr |  | 
						
							| 76 |  | eqid |  | 
						
							| 77 | 38 | fveq2d |  | 
						
							| 78 | 8 77 | eqtrid |  | 
						
							| 79 | 78 | eleq2d |  | 
						
							| 80 | 79 | biimpcd |  | 
						
							| 81 | 80 | adantr |  | 
						
							| 82 | 81 | impcom |  | 
						
							| 83 | 82 | adantr |  | 
						
							| 84 |  | eqid |  | 
						
							| 85 | 46 58 4 84 | lmodvscl |  | 
						
							| 86 | 44 83 57 85 | syl3anc |  | 
						
							| 87 | 86 | ralrimiva |  | 
						
							| 88 | 60 72 74 75 76 87 | gsummpt1n0 |  | 
						
							| 89 | 15 88 | sylanl2 |  | 
						
							| 90 | 69 89 | eqtrd |  | 
						
							| 91 |  | csbov2g |  | 
						
							| 92 |  | csbov1g |  | 
						
							| 93 |  | csbvarg |  | 
						
							| 94 | 93 | oveq1d |  | 
						
							| 95 | 92 94 | eqtrd |  | 
						
							| 96 | 95 | oveq2d |  | 
						
							| 97 | 91 96 | eqtrd |  | 
						
							| 98 | 97 | ad2antll |  | 
						
							| 99 | 21 90 98 | 3eqtrd |  |