| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpfo.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pm2mpfo.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pm2mpfo.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pm2mpfo.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 5 |  | pm2mpfo.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 6 |  | pm2mpfo.x | ⊢ 𝑋  =  ( var1 ‘ 𝐴 ) | 
						
							| 7 |  | pm2mpfo.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 8 |  | pm2mpfo.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 9 |  | pm2mpfo.l | ⊢ 𝐿  =  ( Base ‘ 𝑄 ) | 
						
							| 10 |  | pm2mpfo.t | ⊢ 𝑇  =  ( 𝑁  pMatToMatPoly  𝑅 ) | 
						
							| 11 |  | eqid | ⊢ ( +g ‘ 𝐶 )  =  ( +g ‘ 𝐶 ) | 
						
							| 12 |  | eqid | ⊢ ( +g ‘ 𝑄 )  =  ( +g ‘ 𝑄 ) | 
						
							| 13 | 1 2 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  Ring ) | 
						
							| 14 |  | ringgrp | ⊢ ( 𝐶  ∈  Ring  →  𝐶  ∈  Grp ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  Grp ) | 
						
							| 16 | 7 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 17 | 8 | ply1ring | ⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  Ring ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  Ring ) | 
						
							| 19 |  | ringgrp | ⊢ ( 𝑄  ∈  Ring  →  𝑄  ∈  Grp ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  Grp ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 10 9 | pm2mpf | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇 : 𝐵 ⟶ 𝐿 ) | 
						
							| 22 |  | ringmnd | ⊢ ( 𝐶  ∈  Ring  →  𝐶  ∈  Mnd ) | 
						
							| 23 | 13 22 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  Mnd ) | 
						
							| 24 | 23 | anim1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝐶  ∈  Mnd  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) ) ) | 
						
							| 25 |  | 3anass | ⊢ ( ( 𝐶  ∈  Mnd  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  ↔  ( 𝐶  ∈  Mnd  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) ) ) | 
						
							| 26 | 24 25 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝐶  ∈  Mnd  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) ) | 
						
							| 27 | 3 11 | mndcl | ⊢ ( ( 𝐶  ∈  Mnd  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 29 | 2 3 | decpmatval | ⊢ ( ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 )  ∈  𝐵  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 )  decompPMat  𝑘 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 30 | 28 29 | sylan | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 )  decompPMat  𝑘 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 31 |  | simplll | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑁  ∈  Fin ) | 
						
							| 32 |  | fvexd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 )  ∈  V ) | 
						
							| 33 |  | fvexd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 )  ∈  V ) | 
						
							| 34 |  | eqidd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 35 |  | eqidd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 36 | 31 31 32 33 34 35 | offval22 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) )  ∘f  ( +g ‘ 𝑅 ) ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 37 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 38 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 39 |  | simpllr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 40 |  | simprl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑖  ∈  𝑁 ) | 
						
							| 41 |  | simprr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑗  ∈  𝑁 ) | 
						
							| 42 | 3 | eleq2i | ⊢ ( 𝑎  ∈  𝐵  ↔  𝑎  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 43 | 42 | biimpi | ⊢ ( 𝑎  ∈  𝐵  →  𝑎  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 44 | 43 | ad2antlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑎  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 45 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 46 | 2 45 | matecl | ⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁  ∧  𝑎  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑖 𝑎 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 47 | 40 41 44 46 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑎  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 𝑎 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 48 | 47 | ex | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑎  ∈  𝐵 )  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑎 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 49 | 48 | adantrr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑎 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑎 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 51 | 50 | 3impib | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑎 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 52 |  | simpr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 53 | 52 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 54 |  | eqid | ⊢ ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) | 
						
							| 55 | 54 45 1 37 | coe1fvalcl | ⊢ ( ( ( 𝑖 𝑎 𝑗 )  ∈  ( Base ‘ 𝑃 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 56 | 51 53 55 | syl2anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 57 | 7 37 38 31 39 56 | matbas2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 58 |  | simprl | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑖  ∈  𝑁 ) | 
						
							| 59 |  | simprr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑗  ∈  𝑁 ) | 
						
							| 60 | 3 | eleq2i | ⊢ ( 𝑏  ∈  𝐵  ↔  𝑏  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 61 | 60 | biimpi | ⊢ ( 𝑏  ∈  𝐵  →  𝑏  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 62 | 61 | ad2antlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  𝑏  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 63 | 2 45 | matecl | ⊢ ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁  ∧  𝑏  ∈  ( Base ‘ 𝐶 ) )  →  ( 𝑖 𝑏 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 64 | 58 59 62 63 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 𝑏 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 65 | 64 | ex | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑏  ∈  𝐵 )  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑏 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 66 | 65 | adantrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑏 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑏 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) ) | 
						
							| 68 | 67 | 3impib | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 𝑏 𝑗 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 69 |  | eqid | ⊢ ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) )  =  ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) | 
						
							| 70 | 69 45 1 37 | coe1fvalcl | ⊢ ( ( ( 𝑖 𝑏 𝑗 )  ∈  ( Base ‘ 𝑃 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 71 | 68 53 70 | syl2anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 72 | 7 37 38 31 39 71 | matbas2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 73 |  | eqid | ⊢ ( +g ‘ 𝐴 )  =  ( +g ‘ 𝐴 ) | 
						
							| 74 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 75 | 7 38 73 74 | matplusg2 | ⊢ ( ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) )  ∈  ( Base ‘ 𝐴 )  ∧  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) )  ∈  ( Base ‘ 𝐴 ) )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ( +g ‘ 𝐴 ) ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) )  =  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) )  ∘f  ( +g ‘ 𝑅 ) ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 76 | 57 72 75 | syl2anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ( +g ‘ 𝐴 ) ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) )  =  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) )  ∘f  ( +g ‘ 𝑅 ) ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 77 |  | simplr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) ) | 
						
							| 78 | 77 | anim1i | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) ) ) | 
						
							| 79 | 78 | 3impb | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) ) ) | 
						
							| 80 |  | eqid | ⊢ ( +g ‘ 𝑃 )  =  ( +g ‘ 𝑃 ) | 
						
							| 81 | 2 3 11 80 | matplusgcell | ⊢ ( ( ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 ) )  →  ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 )  =  ( ( 𝑖 𝑎 𝑗 ) ( +g ‘ 𝑃 ) ( 𝑖 𝑏 𝑗 ) ) ) | 
						
							| 82 | 79 81 | syl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 )  =  ( ( 𝑖 𝑎 𝑗 ) ( +g ‘ 𝑃 ) ( 𝑖 𝑏 𝑗 ) ) ) | 
						
							| 83 | 82 | fveq2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( coe1 ‘ ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 ) )  =  ( coe1 ‘ ( ( 𝑖 𝑎 𝑗 ) ( +g ‘ 𝑃 ) ( 𝑖 𝑏 𝑗 ) ) ) ) | 
						
							| 84 | 83 | fveq1d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 ) ) ‘ 𝑘 )  =  ( ( coe1 ‘ ( ( 𝑖 𝑎 𝑗 ) ( +g ‘ 𝑃 ) ( 𝑖 𝑏 𝑗 ) ) ) ‘ 𝑘 ) ) | 
						
							| 85 | 39 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  𝑅  ∈  Ring ) | 
						
							| 86 | 1 45 80 74 | coe1addfv | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  ( 𝑖 𝑎 𝑗 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑖 𝑏 𝑗 )  ∈  ( Base ‘ 𝑃 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ ( ( 𝑖 𝑎 𝑗 ) ( +g ‘ 𝑃 ) ( 𝑖 𝑏 𝑗 ) ) ) ‘ 𝑘 )  =  ( ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 87 | 85 51 68 53 86 | syl31anc | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( ( 𝑖 𝑎 𝑗 ) ( +g ‘ 𝑃 ) ( 𝑖 𝑏 𝑗 ) ) ) ‘ 𝑘 )  =  ( ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 88 | 84 87 | eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 ) ) ‘ 𝑘 )  =  ( ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 89 | 88 | mpoeq3dva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ( +g ‘ 𝑅 ) ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 90 | 36 76 89 | 3eqtr4rd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) 𝑗 ) ) ‘ 𝑘 ) )  =  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ( +g ‘ 𝐴 ) ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 91 | 8 | ply1sca | ⊢ ( 𝐴  ∈  Ring  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 92 | 16 91 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 93 | 92 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 94 | 93 | fveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( +g ‘ 𝐴 )  =  ( +g ‘ ( Scalar ‘ 𝑄 ) ) ) | 
						
							| 95 |  | simprl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑎  ∈  𝐵 ) | 
						
							| 96 | 2 3 | decpmatval | ⊢ ( ( 𝑎  ∈  𝐵  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑎  decompPMat  𝑘 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 97 | 95 96 | sylan | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑎  decompPMat  𝑘 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 98 | 97 | eqcomd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑎  decompPMat  𝑘 ) ) | 
						
							| 99 |  | simprr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑏  ∈  𝐵 ) | 
						
							| 100 | 2 3 | decpmatval | ⊢ ( ( 𝑏  ∈  𝐵  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑏  decompPMat  𝑘 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 101 | 99 100 | sylan | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑏  decompPMat  𝑘 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) ) | 
						
							| 102 | 101 | eqcomd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) )  =  ( 𝑏  decompPMat  𝑘 ) ) | 
						
							| 103 | 94 98 102 | oveq123d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑎 𝑗 ) ) ‘ 𝑘 ) ) ( +g ‘ 𝐴 ) ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 𝑏 𝑗 ) ) ‘ 𝑘 ) ) )  =  ( ( 𝑎  decompPMat  𝑘 ) ( +g ‘ ( Scalar ‘ 𝑄 ) ) ( 𝑏  decompPMat  𝑘 ) ) ) | 
						
							| 104 | 30 90 103 | 3eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 )  decompPMat  𝑘 )  =  ( ( 𝑎  decompPMat  𝑘 ) ( +g ‘ ( Scalar ‘ 𝑄 ) ) ( 𝑏  decompPMat  𝑘 ) ) ) | 
						
							| 105 | 104 | oveq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( ( ( 𝑎  decompPMat  𝑘 ) ( +g ‘ ( Scalar ‘ 𝑄 ) ) ( 𝑏  decompPMat  𝑘 ) )  ∗  ( 𝑘  ↑  𝑋 ) ) ) | 
						
							| 106 | 8 | ply1lmod | ⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  LMod ) | 
						
							| 107 | 16 106 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  LMod ) | 
						
							| 108 | 107 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑄  ∈  LMod ) | 
						
							| 109 |  | simpl | ⊢ ( ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  𝑎  ∈  𝐵 ) | 
						
							| 110 | 109 | ad2antlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑎  ∈  𝐵 ) | 
						
							| 111 | 1 2 3 7 38 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑎  ∈  𝐵  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑎  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 112 | 39 110 52 111 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑎  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 113 | 92 | eqcomd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( Scalar ‘ 𝑄 )  =  𝐴 ) | 
						
							| 114 | 113 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( Scalar ‘ 𝑄 )  =  𝐴 ) | 
						
							| 115 | 114 | fveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( Base ‘ ( Scalar ‘ 𝑄 ) )  =  ( Base ‘ 𝐴 ) ) | 
						
							| 116 | 112 115 | eleqtrrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑎  decompPMat  𝑘 )  ∈  ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) | 
						
							| 117 |  | simpr | ⊢ ( ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  𝐵 ) | 
						
							| 118 | 117 | ad2antlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑏  ∈  𝐵 ) | 
						
							| 119 | 1 2 3 7 38 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑏  ∈  𝐵  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑏  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 120 | 39 118 52 119 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑏  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 121 | 120 115 | eleqtrrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑏  decompPMat  𝑘 )  ∈  ( Base ‘ ( Scalar ‘ 𝑄 ) ) ) | 
						
							| 122 |  | eqid | ⊢ ( mulGrp ‘ 𝑄 )  =  ( mulGrp ‘ 𝑄 ) | 
						
							| 123 | 122 9 | mgpbas | ⊢ 𝐿  =  ( Base ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 124 | 122 | ringmgp | ⊢ ( 𝑄  ∈  Ring  →  ( mulGrp ‘ 𝑄 )  ∈  Mnd ) | 
						
							| 125 | 18 124 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( mulGrp ‘ 𝑄 )  ∈  Mnd ) | 
						
							| 126 | 125 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( mulGrp ‘ 𝑄 )  ∈  Mnd ) | 
						
							| 127 | 6 8 9 | vr1cl | ⊢ ( 𝐴  ∈  Ring  →  𝑋  ∈  𝐿 ) | 
						
							| 128 | 16 127 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑋  ∈  𝐿 ) | 
						
							| 129 | 128 | ad2antrr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑋  ∈  𝐿 ) | 
						
							| 130 | 123 5 126 52 129 | mulgnn0cld | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ↑  𝑋 )  ∈  𝐿 ) | 
						
							| 131 |  | eqid | ⊢ ( Scalar ‘ 𝑄 )  =  ( Scalar ‘ 𝑄 ) | 
						
							| 132 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑄 ) )  =  ( Base ‘ ( Scalar ‘ 𝑄 ) ) | 
						
							| 133 |  | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑄 ) )  =  ( +g ‘ ( Scalar ‘ 𝑄 ) ) | 
						
							| 134 | 9 12 131 4 132 133 | lmodvsdir | ⊢ ( ( 𝑄  ∈  LMod  ∧  ( ( 𝑎  decompPMat  𝑘 )  ∈  ( Base ‘ ( Scalar ‘ 𝑄 ) )  ∧  ( 𝑏  decompPMat  𝑘 )  ∈  ( Base ‘ ( Scalar ‘ 𝑄 ) )  ∧  ( 𝑘  ↑  𝑋 )  ∈  𝐿 ) )  →  ( ( ( 𝑎  decompPMat  𝑘 ) ( +g ‘ ( Scalar ‘ 𝑄 ) ) ( 𝑏  decompPMat  𝑘 ) )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( ( ( 𝑎  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ( +g ‘ 𝑄 ) ( ( 𝑏  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) | 
						
							| 135 | 108 116 121 130 134 | syl13anc | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑎  decompPMat  𝑘 ) ( +g ‘ ( Scalar ‘ 𝑄 ) ) ( 𝑏  decompPMat  𝑘 ) )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( ( ( 𝑎  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ( +g ‘ 𝑄 ) ( ( 𝑏  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) | 
						
							| 136 | 105 135 | eqtrd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) )  =  ( ( ( 𝑎  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ( +g ‘ 𝑄 ) ( ( 𝑏  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) | 
						
							| 137 | 136 | mpteq2dva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 𝑎  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ( +g ‘ 𝑄 ) ( ( 𝑏  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 138 | 137 | oveq2d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 𝑎  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ( +g ‘ 𝑄 ) ( ( 𝑏  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 139 |  | eqid | ⊢ ( 0g ‘ 𝑄 )  =  ( 0g ‘ 𝑄 ) | 
						
							| 140 |  | ringcmn | ⊢ ( 𝑄  ∈  Ring  →  𝑄  ∈  CMnd ) | 
						
							| 141 | 18 140 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  CMnd ) | 
						
							| 142 | 141 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑄  ∈  CMnd ) | 
						
							| 143 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 144 | 143 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ℕ0  ∈  V ) | 
						
							| 145 | 109 | anim2i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑎  ∈  𝐵 ) ) | 
						
							| 146 |  | df-3an | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑎  ∈  𝐵 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑎  ∈  𝐵 ) ) | 
						
							| 147 | 145 146 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑎  ∈  𝐵 ) ) | 
						
							| 148 | 1 2 3 4 5 6 7 8 9 | pm2mpghmlem1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑎  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑎  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) )  ∈  𝐿 ) | 
						
							| 149 | 147 148 | sylan | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑎  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) )  ∈  𝐿 ) | 
						
							| 150 | 117 | anim2i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑏  ∈  𝐵 ) ) | 
						
							| 151 |  | df-3an | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑏  ∈  𝐵 )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  𝑏  ∈  𝐵 ) ) | 
						
							| 152 | 150 151 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑏  ∈  𝐵 ) ) | 
						
							| 153 | 1 2 3 4 5 6 7 8 9 | pm2mpghmlem1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑏  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑏  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) )  ∈  𝐿 ) | 
						
							| 154 | 152 153 | sylan | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑏  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) )  ∈  𝐿 ) | 
						
							| 155 |  | eqidd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) | 
						
							| 156 |  | eqidd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑏  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑏  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) | 
						
							| 157 | 1 2 3 4 5 6 7 8 | pm2mpghmlem2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑎  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑄 ) ) | 
						
							| 158 | 147 157 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑄 ) ) | 
						
							| 159 | 1 2 3 4 5 6 7 8 | pm2mpghmlem2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑏  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑏  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑄 ) ) | 
						
							| 160 | 152 159 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑏  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑄 ) ) | 
						
							| 161 | 9 139 12 142 144 149 154 155 156 158 160 | gsummptfsadd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 𝑎  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ( +g ‘ 𝑄 ) ( ( 𝑏  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) )  =  ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ( +g ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑏  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 162 | 138 161 | eqtrd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) )  =  ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ( +g ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑏  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 163 |  | simpll | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑁  ∈  Fin ) | 
						
							| 164 |  | simplr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑅  ∈  Ring ) | 
						
							| 165 | 1 2 3 4 5 6 7 8 10 | pm2mpfval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 )  ∈  𝐵 )  →  ( 𝑇 ‘ ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 166 | 163 164 28 165 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑇 ‘ ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 )  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 167 | 1 2 3 4 5 6 7 8 10 | pm2mpfval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑎  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑎 )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 168 | 163 164 95 167 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑇 ‘ 𝑎 )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 169 | 1 2 3 4 5 6 7 8 10 | pm2mpfval | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑏  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑏 )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑏  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 170 | 163 164 99 169 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑇 ‘ 𝑏 )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑏  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) | 
						
							| 171 | 168 170 | oveq12d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝑇 ‘ 𝑎 ) ( +g ‘ 𝑄 ) ( 𝑇 ‘ 𝑏 ) )  =  ( ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑎  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ( +g ‘ 𝑄 ) ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑏  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ) | 
						
							| 172 | 162 166 171 | 3eqtr4d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑇 ‘ ( 𝑎 ( +g ‘ 𝐶 ) 𝑏 ) )  =  ( ( 𝑇 ‘ 𝑎 ) ( +g ‘ 𝑄 ) ( 𝑇 ‘ 𝑏 ) ) ) | 
						
							| 173 | 3 9 11 12 15 20 21 172 | isghmd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇  ∈  ( 𝐶  GrpHom  𝑄 ) ) |