Metamath Proof Explorer


Theorem pm2mpghm

Description: The transformation of polynomial matrices into polynomials over matrices is an additive group homomorphism. (Contributed by AV, 16-Oct-2019) (Revised by AV, 6-Dec-2019)

Ref Expression
Hypotheses pm2mpfo.p P = Poly 1 R
pm2mpfo.c C = N Mat P
pm2mpfo.b B = Base C
pm2mpfo.m ˙ = Q
pm2mpfo.e × ˙ = mulGrp Q
pm2mpfo.x X = var 1 A
pm2mpfo.a A = N Mat R
pm2mpfo.q Q = Poly 1 A
pm2mpfo.l L = Base Q
pm2mpfo.t T = N pMatToMatPoly R
Assertion pm2mpghm N Fin R Ring T C GrpHom Q

Proof

Step Hyp Ref Expression
1 pm2mpfo.p P = Poly 1 R
2 pm2mpfo.c C = N Mat P
3 pm2mpfo.b B = Base C
4 pm2mpfo.m ˙ = Q
5 pm2mpfo.e × ˙ = mulGrp Q
6 pm2mpfo.x X = var 1 A
7 pm2mpfo.a A = N Mat R
8 pm2mpfo.q Q = Poly 1 A
9 pm2mpfo.l L = Base Q
10 pm2mpfo.t T = N pMatToMatPoly R
11 eqid + C = + C
12 eqid + Q = + Q
13 1 2 pmatring N Fin R Ring C Ring
14 ringgrp C Ring C Grp
15 13 14 syl N Fin R Ring C Grp
16 7 matring N Fin R Ring A Ring
17 8 ply1ring A Ring Q Ring
18 16 17 syl N Fin R Ring Q Ring
19 ringgrp Q Ring Q Grp
20 18 19 syl N Fin R Ring Q Grp
21 1 2 3 4 5 6 7 8 10 9 pm2mpf N Fin R Ring T : B L
22 ringmnd C Ring C Mnd
23 13 22 syl N Fin R Ring C Mnd
24 23 anim1i N Fin R Ring a B b B C Mnd a B b B
25 3anass C Mnd a B b B C Mnd a B b B
26 24 25 sylibr N Fin R Ring a B b B C Mnd a B b B
27 3 11 mndcl C Mnd a B b B a + C b B
28 26 27 syl N Fin R Ring a B b B a + C b B
29 2 3 decpmatval a + C b B k 0 a + C b decompPMat k = i N , j N coe 1 i a + C b j k
30 28 29 sylan N Fin R Ring a B b B k 0 a + C b decompPMat k = i N , j N coe 1 i a + C b j k
31 simplll N Fin R Ring a B b B k 0 N Fin
32 fvexd N Fin R Ring a B b B k 0 i N j N coe 1 i a j k V
33 fvexd N Fin R Ring a B b B k 0 i N j N coe 1 i b j k V
34 eqidd N Fin R Ring a B b B k 0 i N , j N coe 1 i a j k = i N , j N coe 1 i a j k
35 eqidd N Fin R Ring a B b B k 0 i N , j N coe 1 i b j k = i N , j N coe 1 i b j k
36 31 31 32 33 34 35 offval22 N Fin R Ring a B b B k 0 i N , j N coe 1 i a j k + R f i N , j N coe 1 i b j k = i N , j N coe 1 i a j k + R coe 1 i b j k
37 eqid Base R = Base R
38 eqid Base A = Base A
39 simpllr N Fin R Ring a B b B k 0 R Ring
40 simprl N Fin R Ring a B i N j N i N
41 simprr N Fin R Ring a B i N j N j N
42 3 eleq2i a B a Base C
43 42 biimpi a B a Base C
44 43 ad2antlr N Fin R Ring a B i N j N a Base C
45 eqid Base P = Base P
46 2 45 matecl i N j N a Base C i a j Base P
47 40 41 44 46 syl3anc N Fin R Ring a B i N j N i a j Base P
48 47 ex N Fin R Ring a B i N j N i a j Base P
49 48 adantrr N Fin R Ring a B b B i N j N i a j Base P
50 49 adantr N Fin R Ring a B b B k 0 i N j N i a j Base P
51 50 3impib N Fin R Ring a B b B k 0 i N j N i a j Base P
52 simpr N Fin R Ring a B b B k 0 k 0
53 52 3ad2ant1 N Fin R Ring a B b B k 0 i N j N k 0
54 eqid coe 1 i a j = coe 1 i a j
55 54 45 1 37 coe1fvalcl i a j Base P k 0 coe 1 i a j k Base R
56 51 53 55 syl2anc N Fin R Ring a B b B k 0 i N j N coe 1 i a j k Base R
57 7 37 38 31 39 56 matbas2d N Fin R Ring a B b B k 0 i N , j N coe 1 i a j k Base A
58 simprl N Fin R Ring b B i N j N i N
59 simprr N Fin R Ring b B i N j N j N
60 3 eleq2i b B b Base C
61 60 biimpi b B b Base C
62 61 ad2antlr N Fin R Ring b B i N j N b Base C
63 2 45 matecl i N j N b Base C i b j Base P
64 58 59 62 63 syl3anc N Fin R Ring b B i N j N i b j Base P
65 64 ex N Fin R Ring b B i N j N i b j Base P
66 65 adantrl N Fin R Ring a B b B i N j N i b j Base P
67 66 adantr N Fin R Ring a B b B k 0 i N j N i b j Base P
68 67 3impib N Fin R Ring a B b B k 0 i N j N i b j Base P
69 eqid coe 1 i b j = coe 1 i b j
70 69 45 1 37 coe1fvalcl i b j Base P k 0 coe 1 i b j k Base R
71 68 53 70 syl2anc N Fin R Ring a B b B k 0 i N j N coe 1 i b j k Base R
72 7 37 38 31 39 71 matbas2d N Fin R Ring a B b B k 0 i N , j N coe 1 i b j k Base A
73 eqid + A = + A
74 eqid + R = + R
75 7 38 73 74 matplusg2 i N , j N coe 1 i a j k Base A i N , j N coe 1 i b j k Base A i N , j N coe 1 i a j k + A i N , j N coe 1 i b j k = i N , j N coe 1 i a j k + R f i N , j N coe 1 i b j k
76 57 72 75 syl2anc N Fin R Ring a B b B k 0 i N , j N coe 1 i a j k + A i N , j N coe 1 i b j k = i N , j N coe 1 i a j k + R f i N , j N coe 1 i b j k
77 simplr N Fin R Ring a B b B k 0 a B b B
78 77 anim1i N Fin R Ring a B b B k 0 i N j N a B b B i N j N
79 78 3impb N Fin R Ring a B b B k 0 i N j N a B b B i N j N
80 eqid + P = + P
81 2 3 11 80 matplusgcell a B b B i N j N i a + C b j = i a j + P i b j
82 79 81 syl N Fin R Ring a B b B k 0 i N j N i a + C b j = i a j + P i b j
83 82 fveq2d N Fin R Ring a B b B k 0 i N j N coe 1 i a + C b j = coe 1 i a j + P i b j
84 83 fveq1d N Fin R Ring a B b B k 0 i N j N coe 1 i a + C b j k = coe 1 i a j + P i b j k
85 39 3ad2ant1 N Fin R Ring a B b B k 0 i N j N R Ring
86 1 45 80 74 coe1addfv R Ring i a j Base P i b j Base P k 0 coe 1 i a j + P i b j k = coe 1 i a j k + R coe 1 i b j k
87 85 51 68 53 86 syl31anc N Fin R Ring a B b B k 0 i N j N coe 1 i a j + P i b j k = coe 1 i a j k + R coe 1 i b j k
88 84 87 eqtrd N Fin R Ring a B b B k 0 i N j N coe 1 i a + C b j k = coe 1 i a j k + R coe 1 i b j k
89 88 mpoeq3dva N Fin R Ring a B b B k 0 i N , j N coe 1 i a + C b j k = i N , j N coe 1 i a j k + R coe 1 i b j k
90 36 76 89 3eqtr4rd N Fin R Ring a B b B k 0 i N , j N coe 1 i a + C b j k = i N , j N coe 1 i a j k + A i N , j N coe 1 i b j k
91 8 ply1sca A Ring A = Scalar Q
92 16 91 syl N Fin R Ring A = Scalar Q
93 92 ad2antrr N Fin R Ring a B b B k 0 A = Scalar Q
94 93 fveq2d N Fin R Ring a B b B k 0 + A = + Scalar Q
95 simprl N Fin R Ring a B b B a B
96 2 3 decpmatval a B k 0 a decompPMat k = i N , j N coe 1 i a j k
97 95 96 sylan N Fin R Ring a B b B k 0 a decompPMat k = i N , j N coe 1 i a j k
98 97 eqcomd N Fin R Ring a B b B k 0 i N , j N coe 1 i a j k = a decompPMat k
99 simprr N Fin R Ring a B b B b B
100 2 3 decpmatval b B k 0 b decompPMat k = i N , j N coe 1 i b j k
101 99 100 sylan N Fin R Ring a B b B k 0 b decompPMat k = i N , j N coe 1 i b j k
102 101 eqcomd N Fin R Ring a B b B k 0 i N , j N coe 1 i b j k = b decompPMat k
103 94 98 102 oveq123d N Fin R Ring a B b B k 0 i N , j N coe 1 i a j k + A i N , j N coe 1 i b j k = a decompPMat k + Scalar Q b decompPMat k
104 30 90 103 3eqtrd N Fin R Ring a B b B k 0 a + C b decompPMat k = a decompPMat k + Scalar Q b decompPMat k
105 104 oveq1d N Fin R Ring a B b B k 0 a + C b decompPMat k ˙ k × ˙ X = a decompPMat k + Scalar Q b decompPMat k ˙ k × ˙ X
106 8 ply1lmod A Ring Q LMod
107 16 106 syl N Fin R Ring Q LMod
108 107 ad2antrr N Fin R Ring a B b B k 0 Q LMod
109 simpl a B b B a B
110 109 ad2antlr N Fin R Ring a B b B k 0 a B
111 1 2 3 7 38 decpmatcl R Ring a B k 0 a decompPMat k Base A
112 39 110 52 111 syl3anc N Fin R Ring a B b B k 0 a decompPMat k Base A
113 92 eqcomd N Fin R Ring Scalar Q = A
114 113 ad2antrr N Fin R Ring a B b B k 0 Scalar Q = A
115 114 fveq2d N Fin R Ring a B b B k 0 Base Scalar Q = Base A
116 112 115 eleqtrrd N Fin R Ring a B b B k 0 a decompPMat k Base Scalar Q
117 simpr a B b B b B
118 117 ad2antlr N Fin R Ring a B b B k 0 b B
119 1 2 3 7 38 decpmatcl R Ring b B k 0 b decompPMat k Base A
120 39 118 52 119 syl3anc N Fin R Ring a B b B k 0 b decompPMat k Base A
121 120 115 eleqtrrd N Fin R Ring a B b B k 0 b decompPMat k Base Scalar Q
122 eqid mulGrp Q = mulGrp Q
123 122 ringmgp Q Ring mulGrp Q Mnd
124 18 123 syl N Fin R Ring mulGrp Q Mnd
125 124 ad2antrr N Fin R Ring a B b B k 0 mulGrp Q Mnd
126 6 8 9 vr1cl A Ring X L
127 16 126 syl N Fin R Ring X L
128 127 ad2antrr N Fin R Ring a B b B k 0 X L
129 122 9 mgpbas L = Base mulGrp Q
130 129 5 mulgnn0cl mulGrp Q Mnd k 0 X L k × ˙ X L
131 125 52 128 130 syl3anc N Fin R Ring a B b B k 0 k × ˙ X L
132 eqid Scalar Q = Scalar Q
133 eqid Base Scalar Q = Base Scalar Q
134 eqid + Scalar Q = + Scalar Q
135 9 12 132 4 133 134 lmodvsdir Q LMod a decompPMat k Base Scalar Q b decompPMat k Base Scalar Q k × ˙ X L a decompPMat k + Scalar Q b decompPMat k ˙ k × ˙ X = a decompPMat k ˙ k × ˙ X + Q b decompPMat k ˙ k × ˙ X
136 108 116 121 131 135 syl13anc N Fin R Ring a B b B k 0 a decompPMat k + Scalar Q b decompPMat k ˙ k × ˙ X = a decompPMat k ˙ k × ˙ X + Q b decompPMat k ˙ k × ˙ X
137 105 136 eqtrd N Fin R Ring a B b B k 0 a + C b decompPMat k ˙ k × ˙ X = a decompPMat k ˙ k × ˙ X + Q b decompPMat k ˙ k × ˙ X
138 137 mpteq2dva N Fin R Ring a B b B k 0 a + C b decompPMat k ˙ k × ˙ X = k 0 a decompPMat k ˙ k × ˙ X + Q b decompPMat k ˙ k × ˙ X
139 138 oveq2d N Fin R Ring a B b B Q k 0 a + C b decompPMat k ˙ k × ˙ X = Q k 0 a decompPMat k ˙ k × ˙ X + Q b decompPMat k ˙ k × ˙ X
140 eqid 0 Q = 0 Q
141 ringcmn Q Ring Q CMnd
142 18 141 syl N Fin R Ring Q CMnd
143 142 adantr N Fin R Ring a B b B Q CMnd
144 nn0ex 0 V
145 144 a1i N Fin R Ring a B b B 0 V
146 109 anim2i N Fin R Ring a B b B N Fin R Ring a B
147 df-3an N Fin R Ring a B N Fin R Ring a B
148 146 147 sylibr N Fin R Ring a B b B N Fin R Ring a B
149 1 2 3 4 5 6 7 8 9 pm2mpghmlem1 N Fin R Ring a B k 0 a decompPMat k ˙ k × ˙ X L
150 148 149 sylan N Fin R Ring a B b B k 0 a decompPMat k ˙ k × ˙ X L
151 117 anim2i N Fin R Ring a B b B N Fin R Ring b B
152 df-3an N Fin R Ring b B N Fin R Ring b B
153 151 152 sylibr N Fin R Ring a B b B N Fin R Ring b B
154 1 2 3 4 5 6 7 8 9 pm2mpghmlem1 N Fin R Ring b B k 0 b decompPMat k ˙ k × ˙ X L
155 153 154 sylan N Fin R Ring a B b B k 0 b decompPMat k ˙ k × ˙ X L
156 eqidd N Fin R Ring a B b B k 0 a decompPMat k ˙ k × ˙ X = k 0 a decompPMat k ˙ k × ˙ X
157 eqidd N Fin R Ring a B b B k 0 b decompPMat k ˙ k × ˙ X = k 0 b decompPMat k ˙ k × ˙ X
158 1 2 3 4 5 6 7 8 pm2mpghmlem2 N Fin R Ring a B finSupp 0 Q k 0 a decompPMat k ˙ k × ˙ X
159 148 158 syl N Fin R Ring a B b B finSupp 0 Q k 0 a decompPMat k ˙ k × ˙ X
160 1 2 3 4 5 6 7 8 pm2mpghmlem2 N Fin R Ring b B finSupp 0 Q k 0 b decompPMat k ˙ k × ˙ X
161 153 160 syl N Fin R Ring a B b B finSupp 0 Q k 0 b decompPMat k ˙ k × ˙ X
162 9 140 12 143 145 150 155 156 157 159 161 gsummptfsadd N Fin R Ring a B b B Q k 0 a decompPMat k ˙ k × ˙ X + Q b decompPMat k ˙ k × ˙ X = Q k 0 a decompPMat k ˙ k × ˙ X + Q Q k 0 b decompPMat k ˙ k × ˙ X
163 139 162 eqtrd N Fin R Ring a B b B Q k 0 a + C b decompPMat k ˙ k × ˙ X = Q k 0 a decompPMat k ˙ k × ˙ X + Q Q k 0 b decompPMat k ˙ k × ˙ X
164 simpll N Fin R Ring a B b B N Fin
165 simplr N Fin R Ring a B b B R Ring
166 1 2 3 4 5 6 7 8 10 pm2mpfval N Fin R Ring a + C b B T a + C b = Q k 0 a + C b decompPMat k ˙ k × ˙ X
167 164 165 28 166 syl3anc N Fin R Ring a B b B T a + C b = Q k 0 a + C b decompPMat k ˙ k × ˙ X
168 1 2 3 4 5 6 7 8 10 pm2mpfval N Fin R Ring a B T a = Q k 0 a decompPMat k ˙ k × ˙ X
169 164 165 95 168 syl3anc N Fin R Ring a B b B T a = Q k 0 a decompPMat k ˙ k × ˙ X
170 1 2 3 4 5 6 7 8 10 pm2mpfval N Fin R Ring b B T b = Q k 0 b decompPMat k ˙ k × ˙ X
171 164 165 99 170 syl3anc N Fin R Ring a B b B T b = Q k 0 b decompPMat k ˙ k × ˙ X
172 169 171 oveq12d N Fin R Ring a B b B T a + Q T b = Q k 0 a decompPMat k ˙ k × ˙ X + Q Q k 0 b decompPMat k ˙ k × ˙ X
173 163 167 172 3eqtr4d N Fin R Ring a B b B T a + C b = T a + Q T b
174 3 9 11 12 15 20 21 173 isghmd N Fin R Ring T C GrpHom Q