Metamath Proof Explorer


Theorem pm2mpghmlem1

Description: Lemma 1 for pm2mpghm . (Contributed by AV, 15-Oct-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pm2mpfo.p P=Poly1R
pm2mpfo.c C=NMatP
pm2mpfo.b B=BaseC
pm2mpfo.m ˙=Q
pm2mpfo.e ×˙=mulGrpQ
pm2mpfo.x X=var1A
pm2mpfo.a A=NMatR
pm2mpfo.q Q=Poly1A
pm2mpfo.l L=BaseQ
Assertion pm2mpghmlem1 NFinRRingMBK0MdecompPMatK˙K×˙XL

Proof

Step Hyp Ref Expression
1 pm2mpfo.p P=Poly1R
2 pm2mpfo.c C=NMatP
3 pm2mpfo.b B=BaseC
4 pm2mpfo.m ˙=Q
5 pm2mpfo.e ×˙=mulGrpQ
6 pm2mpfo.x X=var1A
7 pm2mpfo.a A=NMatR
8 pm2mpfo.q Q=Poly1A
9 pm2mpfo.l L=BaseQ
10 7 matring NFinRRingARing
11 10 3adant3 NFinRRingMBARing
12 11 adantr NFinRRingMBK0ARing
13 simpl2 NFinRRingMBK0RRing
14 simpl3 NFinRRingMBK0MB
15 simpr NFinRRingMBK0K0
16 eqid BaseA=BaseA
17 1 2 3 7 16 decpmatcl RRingMBK0MdecompPMatKBaseA
18 13 14 15 17 syl3anc NFinRRingMBK0MdecompPMatKBaseA
19 eqid mulGrpQ=mulGrpQ
20 16 8 6 4 19 5 9 ply1tmcl ARingMdecompPMatKBaseAK0MdecompPMatK˙K×˙XL
21 12 18 15 20 syl3anc NFinRRingMBK0MdecompPMatK˙K×˙XL