| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpfo.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pm2mpfo.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pm2mpfo.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pm2mpfo.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 5 |  | pm2mpfo.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 6 |  | pm2mpfo.x | ⊢ 𝑋  =  ( var1 ‘ 𝐴 ) | 
						
							| 7 |  | pm2mpfo.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 8 |  | pm2mpfo.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 9 |  | pm2mpfo.l | ⊢ 𝐿  =  ( Base ‘ 𝑄 ) | 
						
							| 10 | 7 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 11 | 10 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝐴  ∈  Ring ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  𝐴  ∈  Ring ) | 
						
							| 13 |  | simpl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 14 |  | simpl3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  𝑀  ∈  𝐵 ) | 
						
							| 15 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  𝐾  ∈  ℕ0 ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 17 | 1 2 3 7 16 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝐾 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 18 | 13 14 15 17 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝐾 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 19 |  | eqid | ⊢ ( mulGrp ‘ 𝑄 )  =  ( mulGrp ‘ 𝑄 ) | 
						
							| 20 | 16 8 6 4 19 5 9 | ply1tmcl | ⊢ ( ( 𝐴  ∈  Ring  ∧  ( 𝑀  decompPMat  𝐾 )  ∈  ( Base ‘ 𝐴 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑀  decompPMat  𝐾 )  ∗  ( 𝐾  ↑  𝑋 ) )  ∈  𝐿 ) | 
						
							| 21 | 12 18 15 20 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝑀  decompPMat  𝐾 )  ∗  ( 𝐾  ↑  𝑋 ) )  ∈  𝐿 ) |