| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpfo.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pm2mpfo.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pm2mpfo.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | pm2mpfo.m |  |-  .* = ( .s ` Q ) | 
						
							| 5 |  | pm2mpfo.e |  |-  .^ = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 6 |  | pm2mpfo.x |  |-  X = ( var1 ` A ) | 
						
							| 7 |  | pm2mpfo.a |  |-  A = ( N Mat R ) | 
						
							| 8 |  | pm2mpfo.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 9 |  | pm2mpfo.l |  |-  L = ( Base ` Q ) | 
						
							| 10 | 7 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 11 | 10 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> A e. Ring ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> A e. Ring ) | 
						
							| 13 |  | simpl2 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> R e. Ring ) | 
						
							| 14 |  | simpl3 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> M e. B ) | 
						
							| 15 |  | simpr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> K e. NN0 ) | 
						
							| 16 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 17 | 1 2 3 7 16 | decpmatcl |  |-  ( ( R e. Ring /\ M e. B /\ K e. NN0 ) -> ( M decompPMat K ) e. ( Base ` A ) ) | 
						
							| 18 | 13 14 15 17 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> ( M decompPMat K ) e. ( Base ` A ) ) | 
						
							| 19 |  | eqid |  |-  ( mulGrp ` Q ) = ( mulGrp ` Q ) | 
						
							| 20 | 16 8 6 4 19 5 9 | ply1tmcl |  |-  ( ( A e. Ring /\ ( M decompPMat K ) e. ( Base ` A ) /\ K e. NN0 ) -> ( ( M decompPMat K ) .* ( K .^ X ) ) e. L ) | 
						
							| 21 | 12 18 15 20 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. NN0 ) -> ( ( M decompPMat K ) .* ( K .^ X ) ) e. L ) |