| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpfo.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pm2mpfo.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pm2mpfo.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pm2mpfo.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 5 |  | pm2mpfo.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 6 |  | pm2mpfo.x | ⊢ 𝑋  =  ( var1 ‘ 𝐴 ) | 
						
							| 7 |  | pm2mpfo.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 8 |  | pm2mpfo.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 9 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ℕ0  ∈  V ) | 
						
							| 11 | 7 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 12 | 11 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝐴  ∈  Ring ) | 
						
							| 13 | 8 | ply1lmod | ⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  LMod ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝑄  ∈  LMod ) | 
						
							| 15 | 8 | ply1sca | ⊢ ( 𝐴  ∈  Ring  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 16 | 12 15 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 18 |  | simpl2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑅  ∈  Ring ) | 
						
							| 19 |  | simpl3 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑀  ∈  𝐵 ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 21 |  | eqid | ⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 ) | 
						
							| 22 | 1 2 3 7 21 | decpmatcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 23 | 18 19 20 22 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) ) | 
						
							| 24 |  | eqid | ⊢ ( mulGrp ‘ 𝑄 )  =  ( mulGrp ‘ 𝑄 ) | 
						
							| 25 | 8 6 24 5 17 | ply1moncl | ⊢ ( ( 𝐴  ∈  Ring  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ↑  𝑋 )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 26 | 12 25 | sylan | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ↑  𝑋 )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 27 |  | eqid | ⊢ ( 0g ‘ 𝑄 )  =  ( 0g ‘ 𝑄 ) | 
						
							| 28 |  | eqid | ⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 ) | 
						
							| 29 | 1 2 3 7 28 | decpmatfsupp | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑀  decompPMat  𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 30 | 29 | 3adant1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑀  decompPMat  𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) ) | 
						
							| 31 | 10 14 16 17 23 26 27 28 4 30 | mptscmfsupp0 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑄 ) ) |