| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpfo.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pm2mpfo.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pm2mpfo.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | pm2mpfo.m |  |-  .* = ( .s ` Q ) | 
						
							| 5 |  | pm2mpfo.e |  |-  .^ = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 6 |  | pm2mpfo.x |  |-  X = ( var1 ` A ) | 
						
							| 7 |  | pm2mpfo.a |  |-  A = ( N Mat R ) | 
						
							| 8 |  | pm2mpfo.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 9 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 10 | 9 | a1i |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> NN0 e. _V ) | 
						
							| 11 | 7 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 12 | 11 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> A e. Ring ) | 
						
							| 13 | 8 | ply1lmod |  |-  ( A e. Ring -> Q e. LMod ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. LMod ) | 
						
							| 15 | 8 | ply1sca |  |-  ( A e. Ring -> A = ( Scalar ` Q ) ) | 
						
							| 16 | 12 15 | syl |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> A = ( Scalar ` Q ) ) | 
						
							| 17 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 18 |  | simpl2 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> R e. Ring ) | 
						
							| 19 |  | simpl3 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> M e. B ) | 
						
							| 20 |  | simpr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 21 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 22 | 1 2 3 7 21 | decpmatcl |  |-  ( ( R e. Ring /\ M e. B /\ k e. NN0 ) -> ( M decompPMat k ) e. ( Base ` A ) ) | 
						
							| 23 | 18 19 20 22 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> ( M decompPMat k ) e. ( Base ` A ) ) | 
						
							| 24 |  | eqid |  |-  ( mulGrp ` Q ) = ( mulGrp ` Q ) | 
						
							| 25 | 8 6 24 5 17 | ply1moncl |  |-  ( ( A e. Ring /\ k e. NN0 ) -> ( k .^ X ) e. ( Base ` Q ) ) | 
						
							| 26 | 12 25 | sylan |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> ( k .^ X ) e. ( Base ` Q ) ) | 
						
							| 27 |  | eqid |  |-  ( 0g ` Q ) = ( 0g ` Q ) | 
						
							| 28 |  | eqid |  |-  ( 0g ` A ) = ( 0g ` A ) | 
						
							| 29 | 1 2 3 7 28 | decpmatfsupp |  |-  ( ( R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp ( 0g ` A ) ) | 
						
							| 30 | 29 | 3adant1 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp ( 0g ` A ) ) | 
						
							| 31 | 10 14 16 17 23 26 27 28 4 30 | mptscmfsupp0 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) finSupp ( 0g ` Q ) ) |