| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpfo.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pm2mpfo.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pm2mpfo.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pm2mpfo.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 5 |  | pm2mpfo.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 6 |  | pm2mpfo.x | ⊢ 𝑋  =  ( var1 ‘ 𝐴 ) | 
						
							| 7 |  | pm2mpfo.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 8 |  | pm2mpfo.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 9 |  | pm2mpfo.l | ⊢ 𝐿  =  ( Base ‘ 𝑄 ) | 
						
							| 10 |  | pm2mpfo.t | ⊢ 𝑇  =  ( 𝑁  pMatToMatPoly  𝑅 ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | pm2mpghm | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇  ∈  ( 𝐶  GrpHom  𝑄 ) ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 12 10 | pm2mpf1o | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇 : 𝐵 –1-1-onto→ ( Base ‘ 𝑄 ) ) | 
						
							| 14 | 3 12 | isgim | ⊢ ( 𝑇  ∈  ( 𝐶  GrpIso  𝑄 )  ↔  ( 𝑇  ∈  ( 𝐶  GrpHom  𝑄 )  ∧  𝑇 : 𝐵 –1-1-onto→ ( Base ‘ 𝑄 ) ) ) | 
						
							| 15 | 11 13 14 | sylanbrc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑇  ∈  ( 𝐶  GrpIso  𝑄 ) ) |