Metamath Proof Explorer


Theorem pm2mpgrpiso

Description: The transformation of polynomial matrices into polynomials over matrices is an additive group isomorphism. (Contributed by AV, 17-Oct-2019)

Ref Expression
Hypotheses pm2mpfo.p
|- P = ( Poly1 ` R )
pm2mpfo.c
|- C = ( N Mat P )
pm2mpfo.b
|- B = ( Base ` C )
pm2mpfo.m
|- .* = ( .s ` Q )
pm2mpfo.e
|- .^ = ( .g ` ( mulGrp ` Q ) )
pm2mpfo.x
|- X = ( var1 ` A )
pm2mpfo.a
|- A = ( N Mat R )
pm2mpfo.q
|- Q = ( Poly1 ` A )
pm2mpfo.l
|- L = ( Base ` Q )
pm2mpfo.t
|- T = ( N pMatToMatPoly R )
Assertion pm2mpgrpiso
|- ( ( N e. Fin /\ R e. Ring ) -> T e. ( C GrpIso Q ) )

Proof

Step Hyp Ref Expression
1 pm2mpfo.p
 |-  P = ( Poly1 ` R )
2 pm2mpfo.c
 |-  C = ( N Mat P )
3 pm2mpfo.b
 |-  B = ( Base ` C )
4 pm2mpfo.m
 |-  .* = ( .s ` Q )
5 pm2mpfo.e
 |-  .^ = ( .g ` ( mulGrp ` Q ) )
6 pm2mpfo.x
 |-  X = ( var1 ` A )
7 pm2mpfo.a
 |-  A = ( N Mat R )
8 pm2mpfo.q
 |-  Q = ( Poly1 ` A )
9 pm2mpfo.l
 |-  L = ( Base ` Q )
10 pm2mpfo.t
 |-  T = ( N pMatToMatPoly R )
11 1 2 3 4 5 6 7 8 9 10 pm2mpghm
 |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( C GrpHom Q ) )
12 eqid
 |-  ( Base ` Q ) = ( Base ` Q )
13 1 2 3 4 5 6 7 8 12 10 pm2mpf1o
 |-  ( ( N e. Fin /\ R e. Ring ) -> T : B -1-1-onto-> ( Base ` Q ) )
14 3 12 isgim
 |-  ( T e. ( C GrpIso Q ) <-> ( T e. ( C GrpHom Q ) /\ T : B -1-1-onto-> ( Base ` Q ) ) )
15 11 13 14 sylanbrc
 |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( C GrpIso Q ) )