| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpfo.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pm2mpfo.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pm2mpfo.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | pm2mpfo.m |  |-  .* = ( .s ` Q ) | 
						
							| 5 |  | pm2mpfo.e |  |-  .^ = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 6 |  | pm2mpfo.x |  |-  X = ( var1 ` A ) | 
						
							| 7 |  | pm2mpfo.a |  |-  A = ( N Mat R ) | 
						
							| 8 |  | pm2mpfo.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 9 |  | pm2mpfo.l |  |-  L = ( Base ` Q ) | 
						
							| 10 |  | pm2mpfo.t |  |-  T = ( N pMatToMatPoly R ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | pm2mpghm |  |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( C GrpHom Q ) ) | 
						
							| 12 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 12 10 | pm2mpf1o |  |-  ( ( N e. Fin /\ R e. Ring ) -> T : B -1-1-onto-> ( Base ` Q ) ) | 
						
							| 14 | 3 12 | isgim |  |-  ( T e. ( C GrpIso Q ) <-> ( T e. ( C GrpHom Q ) /\ T : B -1-1-onto-> ( Base ` Q ) ) ) | 
						
							| 15 | 11 13 14 | sylanbrc |  |-  ( ( N e. Fin /\ R e. Ring ) -> T e. ( C GrpIso Q ) ) |