Description: The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 14-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pm2mpfo.p | |- P = ( Poly1 ` R ) | |
| pm2mpfo.c | |- C = ( N Mat P ) | ||
| pm2mpfo.b | |- B = ( Base ` C ) | ||
| pm2mpfo.m | |- .* = ( .s ` Q ) | ||
| pm2mpfo.e | |- .^ = ( .g ` ( mulGrp ` Q ) ) | ||
| pm2mpfo.x | |- X = ( var1 ` A ) | ||
| pm2mpfo.a | |- A = ( N Mat R ) | ||
| pm2mpfo.q | |- Q = ( Poly1 ` A ) | ||
| pm2mpfo.l | |- L = ( Base ` Q ) | ||
| pm2mpfo.t | |- T = ( N pMatToMatPoly R ) | ||
| Assertion | pm2mpf1o | |- ( ( N e. Fin /\ R e. Ring ) -> T : B -1-1-onto-> L ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2mpfo.p | |- P = ( Poly1 ` R ) | |
| 2 | pm2mpfo.c | |- C = ( N Mat P ) | |
| 3 | pm2mpfo.b | |- B = ( Base ` C ) | |
| 4 | pm2mpfo.m | |- .* = ( .s ` Q ) | |
| 5 | pm2mpfo.e | |- .^ = ( .g ` ( mulGrp ` Q ) ) | |
| 6 | pm2mpfo.x | |- X = ( var1 ` A ) | |
| 7 | pm2mpfo.a | |- A = ( N Mat R ) | |
| 8 | pm2mpfo.q | |- Q = ( Poly1 ` A ) | |
| 9 | pm2mpfo.l | |- L = ( Base ` Q ) | |
| 10 | pm2mpfo.t | |- T = ( N pMatToMatPoly R ) | |
| 11 | 1 2 3 4 5 6 7 8 10 9 | pm2mpf1 | |- ( ( N e. Fin /\ R e. Ring ) -> T : B -1-1-> L ) | 
| 12 | 1 2 3 4 5 6 7 8 9 10 | pm2mpfo | |- ( ( N e. Fin /\ R e. Ring ) -> T : B -onto-> L ) | 
| 13 | df-f1o | |- ( T : B -1-1-onto-> L <-> ( T : B -1-1-> L /\ T : B -onto-> L ) ) | |
| 14 | 11 12 13 | sylanbrc | |- ( ( N e. Fin /\ R e. Ring ) -> T : B -1-1-onto-> L ) |