Metamath Proof Explorer


Theorem pm2mpf1o

Description: The transformation of polynomial matrices into polynomials over matrices is a 1-1 function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 14-Oct-2019)

Ref Expression
Hypotheses pm2mpfo.p P=Poly1R
pm2mpfo.c C=NMatP
pm2mpfo.b B=BaseC
pm2mpfo.m ˙=Q
pm2mpfo.e ×˙=mulGrpQ
pm2mpfo.x X=var1A
pm2mpfo.a A=NMatR
pm2mpfo.q Q=Poly1A
pm2mpfo.l L=BaseQ
pm2mpfo.t T=NpMatToMatPolyR
Assertion pm2mpf1o NFinRRingT:B1-1 ontoL

Proof

Step Hyp Ref Expression
1 pm2mpfo.p P=Poly1R
2 pm2mpfo.c C=NMatP
3 pm2mpfo.b B=BaseC
4 pm2mpfo.m ˙=Q
5 pm2mpfo.e ×˙=mulGrpQ
6 pm2mpfo.x X=var1A
7 pm2mpfo.a A=NMatR
8 pm2mpfo.q Q=Poly1A
9 pm2mpfo.l L=BaseQ
10 pm2mpfo.t T=NpMatToMatPolyR
11 1 2 3 4 5 6 7 8 10 9 pm2mpf1 NFinRRingT:B1-1L
12 1 2 3 4 5 6 7 8 9 10 pm2mpfo NFinRRingT:BontoL
13 df-f1o T:B1-1 ontoLT:B1-1LT:BontoL
14 11 12 13 sylanbrc NFinRRingT:B1-1 ontoL