| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpfo.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | pm2mpfo.c | ⊢ 𝐶  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 3 |  | pm2mpfo.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 4 |  | pm2mpfo.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝑄 ) | 
						
							| 5 |  | pm2mpfo.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) ) | 
						
							| 6 |  | pm2mpfo.x | ⊢ 𝑋  =  ( var1 ‘ 𝐴 ) | 
						
							| 7 |  | pm2mpfo.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 8 |  | pm2mpfo.q | ⊢ 𝑄  =  ( Poly1 ‘ 𝐴 ) | 
						
							| 9 |  | pm2mpfo.l | ⊢ 𝐿  =  ( Base ‘ 𝑄 ) | 
						
							| 10 |  | pm2mpfo.t | ⊢ 𝑇  =  ( 𝑁  pMatToMatPoly  𝑅 ) | 
						
							| 11 |  | fvexd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 0g ‘ 𝑄 )  ∈  V ) | 
						
							| 12 |  | ovexd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑙  ∈  ℕ0 )  →  ( ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝑙 )  ↦  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑙  −  𝑘 ) ) ) ) )  ∗  ( 𝑙  ↑  𝑋 ) )  ∈  V ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑙  =  𝑛  →  ( 0 ... 𝑙 )  =  ( 0 ... 𝑛 ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑙  =  𝑛  →  ( 𝑙  −  𝑘 )  =  ( 𝑛  −  𝑘 ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( 𝑙  =  𝑛  →  ( 𝑦  decompPMat  ( 𝑙  −  𝑘 ) )  =  ( 𝑦  decompPMat  ( 𝑛  −  𝑘 ) ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝑙  =  𝑛  →  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑙  −  𝑘 ) ) )  =  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑘 ) ) ) ) | 
						
							| 17 | 13 16 | mpteq12dv | ⊢ ( 𝑙  =  𝑛  →  ( 𝑘  ∈  ( 0 ... 𝑙 )  ↦  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑙  −  𝑘 ) ) ) )  =  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑘 ) ) ) ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝑙  =  𝑛  →  ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝑙 )  ↦  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑙  −  𝑘 ) ) ) ) )  =  ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑘 ) ) ) ) ) ) | 
						
							| 19 |  | oveq1 | ⊢ ( 𝑙  =  𝑛  →  ( 𝑙  ↑  𝑋 )  =  ( 𝑛  ↑  𝑋 ) ) | 
						
							| 20 | 18 19 | oveq12d | ⊢ ( 𝑙  =  𝑛  →  ( ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝑙 )  ↦  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑙  −  𝑘 ) ) ) ) )  ∗  ( 𝑙  ↑  𝑋 ) )  =  ( ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑘 ) ) ) ) )  ∗  ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 21 |  | simpll | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑁  ∈  Fin ) | 
						
							| 22 |  | simplr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑅  ∈  Ring ) | 
						
							| 23 | 1 2 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐶  ∈  Ring ) | 
						
							| 24 | 23 | anim1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐶  ∈  Ring  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) ) | 
						
							| 25 |  | 3anass | ⊢ ( ( 𝐶  ∈  Ring  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ↔  ( 𝐶  ∈  Ring  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) ) | 
						
							| 26 | 24 25 | sylibr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐶  ∈  Ring  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) | 
						
							| 27 |  | eqid | ⊢ ( .r ‘ 𝐶 )  =  ( .r ‘ 𝐶 ) | 
						
							| 28 | 3 27 | ringcl | ⊢ ( ( 𝐶  ∈  Ring  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 29 | 26 28 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 30 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 31 | 1 2 3 30 | pmatcoe1fsupp | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 32 | 21 22 29 31 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 33 |  | fvoveq1 | ⊢ ( 𝑎  =  𝑖  →  ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) )  =  ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ) | 
						
							| 34 | 33 | fveq1d | ⊢ ( 𝑎  =  𝑖  →  ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 ) ) | 
						
							| 35 | 34 | eqeq1d | ⊢ ( 𝑎  =  𝑖  →  ( ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 )  ↔  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 36 |  | oveq2 | ⊢ ( 𝑏  =  𝑗  →  ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 )  =  ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) | 
						
							| 37 | 36 | fveq2d | ⊢ ( 𝑏  =  𝑗  →  ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) )  =  ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ) | 
						
							| 38 | 37 | fveq1d | ⊢ ( 𝑏  =  𝑗  →  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) | 
						
							| 39 | 38 | eqeq1d | ⊢ ( 𝑏  =  𝑗  →  ( ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 )  ↔  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 40 | 35 39 | rspc2va | ⊢ ( ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  ∧  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) )  →  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 41 | 40 | expcom | ⊢ ( ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 )  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) )  →  ( ( 𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 43 | 42 | 3impib | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) )  ∧  𝑖  ∈  𝑁  ∧  𝑗  ∈  𝑁 )  →  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 44 | 43 | mpoeq3dva | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 45 | 7 30 | mat0op | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  ( 0g ‘ 𝐴 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 46 | 45 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) )  →  ( 0g ‘ 𝐴 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 47 | 7 | matring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring ) | 
						
							| 48 | 8 | ply1sca | ⊢ ( 𝐴  ∈  Ring  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 49 | 47 48 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 50 | 49 | ad3antrrr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) )  →  𝐴  =  ( Scalar ‘ 𝑄 ) ) | 
						
							| 51 | 50 | fveq2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) )  →  ( 0g ‘ 𝐴 )  =  ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ) | 
						
							| 52 | 44 46 51 | 3eqtr2d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) )  →  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑄 ) ) ) | 
						
							| 53 | 52 | oveq1d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( ( 0g ‘ ( Scalar ‘ 𝑄 ) )  ∗  ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 54 | 8 | ply1lmod | ⊢ ( 𝐴  ∈  Ring  →  𝑄  ∈  LMod ) | 
						
							| 55 | 47 54 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑄  ∈  LMod ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑄  ∈  LMod ) | 
						
							| 57 | 47 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐴  ∈  Ring ) | 
						
							| 58 |  | eqid | ⊢ ( mulGrp ‘ 𝑄 )  =  ( mulGrp ‘ 𝑄 ) | 
						
							| 59 | 8 6 58 5 9 | ply1moncl | ⊢ ( ( 𝐴  ∈  Ring  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ↑  𝑋 )  ∈  𝐿 ) | 
						
							| 60 | 57 59 | sylan | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑛  ↑  𝑋 )  ∈  𝐿 ) | 
						
							| 61 |  | eqid | ⊢ ( Scalar ‘ 𝑄 )  =  ( Scalar ‘ 𝑄 ) | 
						
							| 62 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑄 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑄 ) ) | 
						
							| 63 |  | eqid | ⊢ ( 0g ‘ 𝑄 )  =  ( 0g ‘ 𝑄 ) | 
						
							| 64 | 9 61 4 62 63 | lmod0vs | ⊢ ( ( 𝑄  ∈  LMod  ∧  ( 𝑛  ↑  𝑋 )  ∈  𝐿 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑄 ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) | 
						
							| 65 | 56 60 64 | syl2an2r | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 0g ‘ ( Scalar ‘ 𝑄 ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) )  →  ( ( 0g ‘ ( Scalar ‘ 𝑄 ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) | 
						
							| 67 | 53 66 | eqtrd | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  ∧  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) | 
						
							| 68 | 67 | ex | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 )  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) ) | 
						
							| 69 | 68 | imim2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑠  <  𝑛  →  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) )  →  ( 𝑠  <  𝑛  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) ) ) | 
						
							| 70 | 69 | ralimdva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) ) ) | 
						
							| 71 | 70 | reximdv | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ∀ 𝑎  ∈  𝑁 ∀ 𝑏  ∈  𝑁 ( ( coe1 ‘ ( 𝑎 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑏 ) ) ‘ 𝑛 )  =  ( 0g ‘ 𝑅 ) )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) ) ) | 
						
							| 72 | 32 71 | mpd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) ) | 
						
							| 73 | 2 3 | decpmatval | ⊢ ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  ∈  𝐵  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑛 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) ) | 
						
							| 74 | 29 73 | sylan | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑛 )  =  ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) ) ) | 
						
							| 75 | 74 | oveq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 76 | 75 | eqeq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 )  ↔  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) ) | 
						
							| 77 | 76 | imbi2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑠  <  𝑛  →  ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) )  ↔  ( 𝑠  <  𝑛  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) ) ) | 
						
							| 78 | 77 | ralbidva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) )  ↔  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) ) ) | 
						
							| 79 | 78 | rexbidv | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) )  ↔  ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( ( 𝑖  ∈  𝑁 ,  𝑗  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑖 ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 ) 𝑗 ) ) ‘ 𝑛 ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) ) ) | 
						
							| 80 | 72 79 | mpbird | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) ) | 
						
							| 81 | 1 2 3 7 | decpmatmul | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑛 )  =  ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑘 ) ) ) ) ) ) | 
						
							| 82 | 81 | ad4ant234 | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑛 )  =  ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑘 ) ) ) ) ) ) | 
						
							| 83 | 82 | eqcomd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑘 ) ) ) ) )  =  ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑛 ) ) | 
						
							| 84 | 83 | oveq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑘 ) ) ) ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) ) ) | 
						
							| 85 | 84 | eqeq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑘 ) ) ) ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 )  ↔  ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) ) | 
						
							| 86 | 85 | imbi2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑠  <  𝑛  →  ( ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑘 ) ) ) ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) )  ↔  ( 𝑠  <  𝑛  →  ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) ) ) | 
						
							| 87 | 86 | ralbidva | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑘 ) ) ) ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) )  ↔  ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) ) ) | 
						
							| 88 | 87 | rexbidv | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑘 ) ) ) ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) )  ↔  ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( ( ( 𝑥 ( .r ‘ 𝐶 ) 𝑦 )  decompPMat  𝑛 )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) ) ) | 
						
							| 89 | 80 88 | mpbird | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ∃ 𝑠  ∈  ℕ0 ∀ 𝑛  ∈  ℕ0 ( 𝑠  <  𝑛  →  ( ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑛  −  𝑘 ) ) ) ) )  ∗  ( 𝑛  ↑  𝑋 ) )  =  ( 0g ‘ 𝑄 ) ) ) | 
						
							| 90 | 11 12 20 89 | mptnn0fsuppd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑙  ∈  ℕ0  ↦  ( ( 𝐴  Σg  ( 𝑘  ∈  ( 0 ... 𝑙 )  ↦  ( ( 𝑥  decompPMat  𝑘 ) ( .r ‘ 𝐴 ) ( 𝑦  decompPMat  ( 𝑙  −  𝑘 ) ) ) ) )  ∗  ( 𝑙  ↑  𝑋 ) ) )  finSupp  ( 0g ‘ 𝑄 ) ) |